
A Parametric Communication Model for the

Verification of BPEL4WS Compositions ?

Raman Kazhamiakin and Marco Pistore

DIT, University of Trento
via Sommarive 14, 38050, Trento, Italy

{raman,pistore}@dit.unitn.it

Abstract. In this paper we describe an approach for the verification of
Web service compositions defined by a set of BPEL4WS processes. The
key aspect of such a verification task is the model adopted for represent-
ing the communications among the services participating to the com-
position. Indeed, these communications are asynchronous and buffered
in the existing execution frameworks, while most verification approaches
adopt a synchronous communication model for efficiency reasons. In our
approach, we model the asynchronous nature of Web service interactions
without introducing buffers, by allowing a reordering of the messages ex-
changed during these interactions. This way, we can provide an accurate
model of a wider class of service composition scenarios, while preserving
an efficient performance in verification.

1 Introduction

Web services provide the basis for the development and execution of business pro-
cesses that are distributed over the network and available via standard interfaces
and protocols [9]. Service composition [10] is one of the most promising ideas
underlying Web services: new functionalities can be defined and implemented
by combining and interacting with pre-existing services. Different standards and
languages have been proposed to develop Web service compositions. BPEL4WS
(Business Process Execution Language for Web Services, BPEL for short) [3] is
one of the emerging standards for describing a key aspect for the composition of
Web services: the behavior of the service. It provides a core of process descrip-
tion concepts that allow for the definition of business processes interactions.
This core of concepts is used both for defining the internal business processes

of a participant to a business interaction and for describing and publishing the
external business protocol that defines the interaction behavior of a participant
without revealing its internal behavior.

BPEL opens up the possibility of applying a range of formal techniques to the
verification of the behavior of Web services, and different approaches have been

? This work is partially funded by the MIUR-FIRB project RBNE0195K5, “Knowl-
edge Level Automated Software Engineering”, and by the MIUR-PRIN 2004 project
“Advanced Artificial Intelligence Systems for Web Services”.

defined for verifying BPEL [7, 11, 13, 12, 8, 15]. We are interested in particular in
those techniques that are applied to the verification of BPEL compositions: in
this case, we have to verify the behaviors generated by the interactions of a set
of BPEL processes, each specifying the workflow and the protocol of one of the
services participating to the composition.

A key aspect for this kind of verification is the model adopted for represent-
ing the communications among the Web services. Indeed, the actual mechanism
implemented in the existing BPEL execution engines is both very complex and
implementation dependent. More precisely, BPEL processes exchange messages
in an asynchronous way; incoming messages go through different layers of soft-
ware, and hence through multiple queues, before they are actually consumed in
the BPEL activity; and overpasses are possible among the exchanged messages.

On the other hand, most of the approaches proposed for a formal verification
of BPEL compositions are based on a synchronous model of communications,
which does not require message queues and hence allows for a better performance
in verification. This synchronous mechanism relies on some strong hypotheses
on the interactions allowed in the composition: at a given moment in time, only
one of the components can emit a message, and the receiver of that message is
ready to accept it (see e.g., [8]).

In our experience, these hypotheses are not satisfied by many Web service
composition scenarios of practical relevance, where critical runs can happen
among messages emitted by different Web services. This is the case, for in-
stance, when a Web service can receive inputs concurrently from two different
sources, or when a service which is executing a time consuming task can receive
a cancellation message before the task is completed.

Our goal is to provide extended composition mechanisms, where the hypothe-
ses on synchronous communications are weakened, but an explicit introduction of
message queues is still not required. This way, an accurate modelling is possible
for a wider class of service composition scenarios, while an efficient performance
is still possible.

In this paper, we propose a parametric model of composition, which is based
on synchronous communications, but which allows for a reordering of the ex-
changed messages in order to model critical runs and message overpasses that
may occur in the execution of BPEL processes. More precisely, we define three
variants of this mechanism, depending on the degree of reordering allowed in the
messages. The first variant, where no reordering is possible, corresponds to the
synchronous model of [8]. The second variant permits to reorder only messages
sent or received by different partners, that is, it takes into account that a differ-
ence between the order of emission and the order of reception of the messages
due to the distributed nature of Web services. The third variant, finally, allows
for reordering messages also between the same two partners, thus considering
message overpasses that can occur in the message queues of the BPEL engines.

For each of the three composition models, we define a validity check, that
determines whether the model is adequate for a given composition scenario.
Moreover, we define a composition and verification algorithm that is correct

and complete for those scenarios that pass the validity check. We have imple-
mented the proposed approach and we report our preliminary experiments in its
application to a case study based on a Virtual Travel Agency domain.

The paper is structured as follows. In Sect. 2 we introduce several instances of
the case study that motivate the necessity to consider different variants of com-
munication mechanism. Section 3 explains how BPEL processes can be trans-
lated into state transition systems. We give the formal definition of the extended
composition and the notion of composition validity in Sect. 4, and describe differ-
ent models basing on these notions in Sect. 5. Section 6 explains the architecture
of the described analysis framework and reports the results of its experimental
evaluation. Conclusions and future work are presented in Sect. 7.

2 Modelling BPEL Compositions

In order to illustrate the problem of modelling BPEL compositions we consider
several variants of the Virtual Travel Agency domain. The goal of the Virtual
Travel Agency is to provide a combined flight and hotel booking service by
integrating separate, independent existing services: a Flight booking service,
and a Hotel booking service. Thus, the composition describes the interactions of
four partners: User, Virtual Travel Agency (VTA), Hotel and Flight services (see
Fig. 1.a). We model the composition using BPEL specifications that describe the
workflows and the interactions of the four partners.

Example 1: Tickets Reservation Scenario. The case study describes the behavior
exposed by VTA that allows the user to book a flight to the specified place and
reserve a room in the hotel at that place for a given period of time. Provided
a reservation offer, the user can accept or reject it, sending a corresponding
message to the VTA service (Fig. 1.b).

The Flight booking service becomes active upon a request for a given loca-
tion (e.g., Paris) and a given period of time (e.g., August, 15-20). In the case
the booking is not possible, this is signaled to the requestor, and the protocol
terminates. Otherwise, the requestor is notified with an offer information and
the protocol stops waiting for either a positive or negative acknowledgment. In
case of positive answer the flight is successfully booked and the reservation ticket
is sent, otherwise the interaction terminates with failure. Figure 1.c represents
the protocol provided by the Flight booking service. The protocol of the Hotel
service is similar.

The behavior of the VTA is as follows. Having received a reservation request
from the user, VTA interacts with Flight and Hotel services to obtain ticket
offers and expects either a negative answer if this is not possible (in which case
the user is notified and the protocol terminates failing), or provides the user
with an offer indicating hotel, flights and cost of the trip. After that the user
may either accept or refuse the offer, and in the first case VTA provides the user
with the tickets obtained from Hotel and Flight. The diagram corresponding to
the BPEL protocol of VTA is represented in Fig. 1.d.

[RECEIVE]
Flight Request

[INVOKE]
Flight NA

[INVOKE]
Flight Offer

NA FAILURE
[PICK]

NA FAILURE

[SWITCH]
IsAvailable

SUCCESS

[INVOKE]
Flight Ticket

NO YES

[INVOKE]
request

SUCCESS

[PICK]

NA FAILURE

[RECEIVE]
TicketNA FAILURE

[SWITCH]
ACKNACK

[INVOKE]
nAck

[INVOKE]
Ack

[RECEIVE]
Request

[PICK]

[INVOKE]
Flight Request

[INVOKE]
NA

NA FAILURE

[INVOKE]
Hotel Request

[PICK]

[INVOKE]
FlightnAck

[INVOKE]
NA

NA FAILURE

[INVOKE]
Offer

[PICK]

[INVOKE]
FlightnAck

[INVOKE]
HotelnAck

[INVOKE]
FlightAck

[RECEIVE]
Flight Ticket

FAILURE

[INVOKE]
HotelAck

[RECEIVE]
Hotel Ticket

[INVOKE]
Ticket

SUCCESSb) User process c) Flight process d)VTA process

[ON MESSAGE]
Offer

[ON MESSAGE]
NA

[ON MESSAGE]
Flight NA

[ON MESSAGE]
Flight Offer

[ON MESSAGE]
Hotel NA

[ON MESSAGE]
Hotel Offer

[ON MESSAGE]
nAck

[ON MESSAGE]
Ack

[ON MESSAGE]
FlightnAck

[ON MESSAGE]
FlightAck

a)VTA composition

User

VTA

Flight Service

Hotel Service
Ack /Nack

Flight Request

Offer / NA

Offer / NA

Ack /Nack

Offer / NA

Ack /Nack

Request

Ticket

Flight Ticket

Hotel Ticket

Hotel Request

Fig. 1. Composition participants

The scenario exhibits an important property that allows for a very simple
communication mechanism. At any moment of time only one message can be
emitted by one of the partners. Moreover, such a message is acceptable by the
corresponding receiver. Using the terminology of [8], the composition model sat-
isfies the synchronous compatibility, autonomy and lossless composition prop-
erties. As a consequence, a synchronous communication model can be used to
define the composition without loosing completeness of behaviors.

Example 2: Reservation with Cancellation. Unfortunately, the simplified com-
munication model of the previous example is not applicable to all kinds of in-
teractions. An indicative example is the business process with event handlers.
Let us consider an extension of the above case study, such that the User, after
having acknowledged the provided offer, can decide to cancel booking operation.
In this case the User sends a Cancel message to the VTA process and waits for
an outcome of the cancellation. The cancellation is forwarded to the Flight pro-
cess (and similarly to the Hotel process, we omit this for the sake of simplicity).
The latter waits a certain time for a cancellation message and if it is received,
sends the notification about successful cancellation. Or, if time runs out, sends
a ticket to the VTA thus forcing the failure of cancellation; then it consumes the
cancellation sent by the VTA and ignores it. The excerpts of the corresponding
process specifications are represented in Fig. 2.

[RECEIVE]
Cancel

[INVOKE]
FlightAck

[INVOKE]
No Cancel

[INVOKE]
Cancel Flight

[INVOKE]
Yes Cancel

[INVOKE]
Ticket

. . .

[PICK]

[INVOKE]
Flight Ticket

[RECEIVE]
FlightAck

[INVOKE]
Flight Cancelled

[PICK]

[ON ALARM]
Time Out

[RECEIVE]
Cancel Flight

[ON MESSAGE]
Flight Cancelled

[ON MESSAGE]
Flight Ticket

[ON MESSAGE]
Cancel Flight

FlightVTA

Fig. 2. VTA and Flight processes parts for the cancellation management

The verification under the synchronous communication model is not able to
manage this example correctly and reports a deadlock. Indeed, if the Flight ser-
vice fails to wait for a cancellation, the onAlarm activity is fired and it then tries
to send a ticket to the VTA process. Meanwhile, the latter receives a cancel-
lation message from User and then tries to send the cancellation to the Flight
service. Therefore both services will try to send messages to each other and the
composition is in a deadlock, since this is not acceptable by the synchronous
semantics.

This deadlock is not real, in the sense it does not occur in real BPEL en-
gines; since the Web services communications are asynchronous, and the message
emission is not blocking, both processes will emit messages to each other. Both
messages will be consumed then and the composition terminates correctly.

The problem we are facing here is that the synchronous model is too strict.
The message delivery and processing may require a certain time, thus leading
to situations where concurrent message emissions take place. These situations,
however, are not allowed in the synchronous communication model. In order to
verify correctly the considered example, a relaxed model is needed that allows
to consider these concurrent message emissions.

Example 3: Extended Cancellation Scenario Let us consider a further modi-
fication of the case study. Now the fact that the cancellation is not possible is
signalled with the special messages: NoCancel for the User and NoFlightCancel

for the VTA process. Having sent the cancellation to the Flight service, the VTA
waits for the message indicating that the cancellation is possible or not. In the
latter case it waits for the ticket and sends a ticket to the User. The Flight service
on the other side behaves as before with the only difference that, after emitting
the ticket and receiving the cancellation, it sends a notification about cancella-
tion rejection (i.e. NoFlightCancel message). The corresponding diagrams are
represented in Fig. 3.

Even if one verifies the example allowing for concurrent message emission
the following incorrect scenario will result. The Flight service sends a ticket and

[INVOKE]
Cancel Flight

[INVOKE]
Yes Cancel

[PICK]

[INVOKE]
No Cancel

[INVOKE]
Ticket

[INVOKE]
Flight Ticket

[RECEIVE]
FlightAck

[INVOKE]
Flight Cancelled

[PICK]

[ON ALARM]
Time Out

[RECEIVE]
Cancel Flight

[INVOKE]
No Flight Cancel

[RECEIVE]
Flight Ticket

[ON MESSAGE]
No Flight Cancel

[ON MESSAGE]
Flight Cancelled

[ON MESSAGE]
Cancel Flight

FlightVTA

Fig. 3. VTA and Flight processes parts for the complex cancellation management

waits for a cancellation, the VTA process sends a cancellation, the Flight service
in turn rejects a cancellation and finishes. The VTA has received a ticket and
then a cancellation rejection, but it is not able to process the messages in this
order. Only if the execution of processes in the run-time environment allows
for reordering of messages (which is the case for existing implementations) the
deadlock disappears, since the cancellation rejection can be processed before the
ticket message.

This example shows a necessity not only to consider systems which do not fol-
low the synchronous communication semantics, but also to accept less restrictive
models where message reordering is allowed.

This chain can be further prolonged, leading to more complex communication
models. One can think of lossy channels, complex ordering conditions, complex
queue models etc. Notice, however, that each model requires additional assump-
tions on the environment where the analyzed system is supposed to execute.
These conditions are not always possible to be enforced, or verified. Moreover,
the complexity of the verification problem being applied to a certain model sig-
nificantly varies up to undecidability.

In the following we will introduce the generalized model of the composition,
suitable for the analysis of certain classes of communication models.

3 BPEL Processes as State Transition Systems

BPEL provides an operational description of the (stateful) behavior of Web
services on top of the service interfaces defined in their WSDL specifications.
An abstract BPEL description identifies the partners of a service, its internal
variables, and the operations that are triggered upon the invocation of the ser-
vice by some of the partners. Operations include assigning variables, invoking
other services and receiving responses, forking parallel threads of execution, and
nondeterministically picking one amongst different courses of actions. Standard
imperative constructs such as if-then-else, case choices, and loops, are also sup-
ported.

[RECEIVE]
Flight Request

[INVOKE]
Flight NA

[INVOKE]
Flight Offer

NA FAILURE
[PICK]

NA FAILURE

[SWITCH]
IsAvailable

SUCCESS

NO YES

[ON MESSAGE]
FlightAck

[ON MESSAGE]
FlightnAck

PROCESS
Flight;

TYPE
Time; Location; Flight;

STATE
{IN_FlightRequest, SWITCH_IsAvailable, OUT_FlightNA,

NAFailure, OUT_Offer, PICK_ACK, SUCCESS};
INPUT

fRequest (t : Time, l : Location); fAck; fNAck;

OUTPUT
fOffer (t : Time, f : Flight); fNA;

VAR
fRequest_location : Location; fRequest_time : Time;
fOffer_flight : Flight; fOffer_time : Time;

INIT
state = IN_FlightRequest;

fRequest_location = fRequest_time = fOffer_flight =
fOffer_time = UNDEF;

TRANS
IN_FlightRequest - [IN fRequest(t,l)] -> SWITCH_IsAvailable,

fRequest_time = t,

fRequest_location = l;
SWITCH_IsAvailable - [TAU] -> OUT_FlightNA;

SWITCH_IsAvailable - [TAU] -> OUT_Offer;
OUT_FlightNA - [OUT FligtNA] -> NAFailure;
OUT_Offer - [OUT fOffer(fOffer_time, fOffer_flight)] -> PICK_ACK;

PICK_ACK - [IN fAck] -> SUCCESS;
PICK_ACK - [IN fNAck] -> NAFailure;

Fig. 4. The Flight BPEL process and the corresponding STS.

We encode BPEL processes as state transition systems which describe dy-
namic systems that can be in one of their possible states (some of which are
marked as initial states) and can evolve to new states as a result of performing
some actions. Following the standard approach in process algebras, actions are
distinguished in input actions, which represent the reception of messages, output

actions, which represent messages sent to external services, and a special action
τ , called internal action. The action τ is used to represent internal evolutions
that are not visible to external services, i.e., the fact that the state of the system
can evolve without producing any output, and independently from the reception
of inputs. A transition relation describes how the state can evolve on the basis
of inputs, outputs, or of the internal action τ .

Definition 1 (State transition system). A state transition system Σ is a

tuple 〈S ,S
0
, I ,O,R〉 where:

– S is the finite set of states and S0 ⊆ S is the set of initial states;

– I is a finite set of input actions and O is a finite set of output actions;

– R ⊆ S × (I ∪ O ∪ {τ}) × S is the transition relation.

Figure 4 shows the abstract BPEL process of the Flight service and the
corresponding state transition system. The set of states S models the steps of
the evolution of the process and the values of its variables. The special internal
variable state tracks the information about the current execution step. The
other variables (e.g., fOffer flight, fOffer time) correspond to those used
by the process to store significant information. In the initial states S0 all the
variables are undefined but state that is set to IN FlightRequest.

The evolution of the process is modeled through a set of possible transi-
tions. Each transition defines its applicability conditions on the source state,
its firing action, and the destination state. For instance, “SWITCH IsAvailable

- [TAU] -> OUT FlightNA” states that an action τ can be executed in state
SWITCH IsAvailable and leads to the state OUT FlightNA.

According to the formal model, we distinguish among three different kinds of
actions. The input actions I model all the incoming requests to the process and
the information they bring (i.e., fRequest is used for the receiving of the initial
request, while fAck models the confirmation of the order and fNAck its cancella-
tion). The output actions O represent the outgoing messages (i.e., FlightNA is
used when there are no tickets for the required date and location, while fOffer

is used to bid the particular flight for the request). The action τ is used to
model internal evolutions of the process, as for instance assignments and deci-
sion making (e.g., when the Flight process is in the state SWITCH IsAvailable

and performs internal activities to decide whether there are tickets available).
We remark that the definition of the state transition system provided in Fig. 4

is parametric w.r.t. the types Time, Location, and Flight used in the messages.
In order to obtain a concrete state transition system, finite ranges have to be
assigned to these types.

4 Extended Composition Model

A parallel product with synchronous communications is widely used as a compo-
sition model for Web services [7]. As shown in Sect. 2, this model is however not
adequate for the description of scenarios where more complicated interactions
are essential. We now define an extended composition model that is applicable
to those scenarios. We start with some preliminary definitions.

Let Σ = 〈S ,S
0
, I ,O,R〉 be an STS. Let s = s0, α0, s1, α1, . . . , αn−1, sn be

a trace from s0 to sn and σ = α0, α1, . . . , αn−1, where αi ∈ I ∪ O ∪ {τ}, be a

sequence of actions executed on the trace. We write s0

σ
→ sn, if there is such a

trace, and call Act(σ) ⊆ (I ∪ O)∗ an action word that consists of the sequence
of actions αi 6= τ executed in trace σ. We use ε to denote Act(τ∗). In the next
definition transitions on action words are used to define extended STSs.

Definition 2 (Extended STS). Given STS Σ = 〈S ,S0, I ,O,R〉 its extended

STS, written as Σ̂ = 〈S,S0, I,O, R̂〉, R̂ ⊆ S×(I ∪O)∗×S is defined as follows:

for each pair of states s, s′, s.t. s
σ
→ s′, (s, Act(σ), s′) ∈ R̂.

We say that a transition t of extended STS is included by some bigger transi-
tion t′, written as t � t′, if a trace described by the transition t′ contains a trace
described by t as a subsequence. For instance, the transition (s1, ab, s3) describ-
ing the trace s1, a, s2, b, s3 is included by the transition (s0, abc, s4) describing
the trace s0, τ, s1, a, s2, b, s3, c, s4.

The key idea underlying the introduced composition model is to provide an
extended parallel product, where the synchronization is performed on compatible

extended transitions.

Intuitively, two extended transitions t1 ∈ R̂1 and t2 ∈ R̂2 are compatible,
written as t1 ≈ t2, whenever they contain the same actions, even if we allow
the order of actions in transitions to be different. The definition of compatibility
relation depends on the particular communication model. It may require, for
instance, that the matched symbols should appear in the same order, in the
same places in words, etc. We will see the examples of this in the following
section.

We define the product of extended state transition systems only for closed
systems, that is all the communication actions of them should be shared. For
the sake of simplicity we will introduce the definition of the product only for two
STSs. The definition can be easily extended to the case with arbitrary numbers
of components.

Definition 3 (Extended parallel product). Let Σ̂1 and Σ̂2 be two extended

STSs with I1 = O2 and I2 = O1. Their extended product, written Σ̂1‖̂Σ̂2 is

an extended STS defined as follows:

– S = S1 × S2;
– S0 = S1

0 × S2

0 ;
– I = O = ∅;
– t = ((s1, s2), ε, (s

′
1
, s′

2
)) ∈ R̂ if

• (s1, ε, s
′
1) ∈ R̂1 ∧ s2 = s′2, or (s2, ε, s

′
2) ∈ R̂2 ∧ s1 = s′1;

• ∃ t1 = (s1, σ1, s
′
1
) ∈ R̂1, t2 = (s2, σ2, s

′
2
) ∈ R̂2, t1 ≈ t2;

The transition relation in the definition includes two types of transitions.
The first type describe actions where no communications appear (internal tran-
sitions). In transitions of second type each communication operation takes place
at both sides (synchronized communication).

We remark that, due to the fact that the output actions are non-blocking in
Web service interaction, the extended composition may represent an unfaithful
model of the execution. Consider for instance the following modification of the
cancellation mechanism (Fig. 5). VTA sends a cancellation to the Flight service
and either receives a ticket from it, concluding that the cancellation is rejected,
or a time-out occurs and it concludes that the cancellation can be performed.
On the other side, the Flight service simply sends a ticket accepting then the
cancellation. In this example there is a possibility for the VTA service to send a
cancellation confirmation to the user even if the Flight service sends a ticket. It is
easy to see that this scenario, which occurs in real executions, will not be present
in the extended composition model. Therefore, verification results obtained on
such model may be wrong as they do not consider all scenarios that can occur
in real executions. In order to be able to figure out such situations we introduce
the definition of valid extended parallel product. If the product is shown to be
valid then it describes all possible scenarios and therefore is a faithful model of
execution and can be safely used for further verification.

Intuitively, the situation where some messages can be emitted without being
ever consumed should not occur in valid composition. We say that two extended
transitions t1 ∈ R̂1 and t2 ∈ R̂2 are partially compatible, written as t1 ∼ t2, if
some output actions in one trace can be unmatched in the other trace.

[RECEIVE]
Cancel

[INVOKE]
No Cancel

[INVOKE]
Cancel Flight

[INVOKE]
Ticket

[PICK]

[INVOKE]
Flight Ticket

[RECEIVE]
FlightAck

[RECEIVE]
Cancel Flight

[ON MESSAGE]
Flight Ticket

[ON ALARM]
Time Out

[INVOKE]
Yes Cancel

FlightVTA

Fig. 5. Incorrect cancellation management

Definition 4 (Valid Composition). Given two extended STSs Σ̂1 and Σ̂2,

we say that their composition Σ1‖̂Σ2 is valid if for any state (s1, s2) reachable

in the composition and any two transitions t1 = (s1, σ1, s
′
1
) and t2 = (s2, σ2, s

′
2
),

such that t1 ∼ t2, there are transitions t′1 � t1 and t′2 � t2, such that t′1 ≈ t′2.

That is, the problem of checking the validity of the composition consists of
finding reachable partially compatible extended transitions where some outputs
can not be matched in any longer transitions.

5 Interpretation of Communication Models

We consider three instantiations of the general communication model introduced
in the previous section. They correspond to the different cases of interactions
introduced in Sect. 2. Formally, these models differ only in the way the actions
in traces are matched when the compatibility is determined.

We remark that the extended composition model we introduce in this work
relies on certain assumptions on the run-time environment. The following as-
sumptions are common for any model we consider below:

– an output transition of the STS is non-blocking, i.e. the message can be
emitted regardless a possibility to be ever consumed;

– the channels are perfect, i.e. the messages are not lost;
– the execution is fair, i.e. the enabled action can not be continuously ignored.

As we will show later, a particular model may additionally introduce certain
specific assumptions.

5.1 Synchronous Communications

In this model the total order of all communication actions is relevant. That
is, transitions are compatible if their sequences of communication actions are
equivalent.

Definition 5 (Synchronous Compatibility). Let Σ̂1 and Σ̂2 be two extended

STSs, t1 = (s1, σ1, s
′
1
) ∈ R̂1 and t2 = (s2, σ2, s

′
2
) ∈ R̂2 extended transitions.

Transitions t1 and t2 are compatible under synchronous communications model,

written as t1 ≈s t2 if σ1 = σ2.

The validity of the system under this model coincides with the synchronizabil-
ity property introduced in [8], i.e. the system is valid under this model whenever
it does not allow for any concurrent message emissions. The example represented
in Fig. 1 fits in this model. The composition of processes does not introduce any
concurrent emissions, while the example in the Fig. 2 does. Therefore, the former
can be faithfully verified under synchronous communication semantics, while the
latter requires different semantic model, where the discovered kinds of executions
might be considered as correct.

Due to the strong validity condition there is no need to put additional re-
strictions on the underlying middleware. Whenever the composition appears to
be valid under this semantics, it can be executed independently of the BPEL
engine implementation.

5.2 Ordered Asynchronous Communications

In the example of Fig. 2 there is a situation where the Flight and the VTA pro-
cesses can send messages to each other simultaneously, thus violating the syn-
chronous semantics. However, these messages are then consumed. Moreover, the
mutual order of message emissions/consumptions is preserved in the composi-
tion. We position the systems of such kind as systems with ordered asynchronous
communication semantics.

The compatibility relation for this class of systems has the following features.
First, it handles each pair of partners separately. Second it distinguishes between
the ordering of inputs from the ordering of outputs.

Definition 6 (Ordered Asynchronous Compatibility). Let Σ̂1 and Σ̂2 be

two extended STS, t1 = (s1, σ1, s
′
1
) ∈ R̂1 and t2 = (s2, σ2, s

′
2
) ∈ R̂2.

Let ωI
1

be the subsequence of σ1, obtained by removing all actions symbols

that are not input actions received from Σ̂2. Analogously, ωO
1 is the subseqeunce

of σ1 with only outputs to Σ̂2.

Transitions t1 and t2 are compatible under ordered asynchronous communi-

cation model, written as t1 ≈o t2, if ωI
1 = ωO

2 ∧ ωI
2 = ωO

1 .

This model is able to describe important scenarios, such as cancellation, that
violate the synchronous communication semantics. It has to be noticed that the
validity of the system under this model relies on the fact that the order in which
messages are emitted has to be the same as the order in which they are con-
sumed by the service. This, however, may be violated by real execution engines
thus leading to incorrect behaviors. In order to avoid them, one should either
verify that the system does not introduce incorrect behaviors under unordered
communication model (see below), or enforce the order correctness explicitly in
run-time. This can be done by introducing special monitors that will signal if
the reordering has actually appeared.

NuSMV AnalysisTranslation

W1

:
:
:

Wn

C
o
m

p
o
n
e
n
t

S
e
rv

ic
e
s

Σ1

:
:
:

Σn

Step 1 Step 2

Global
Extended

STS

Step 3 Step 4

Communication
Model

Verification
Properties

Valid

Validity
Counterexample

Property
Counterexample

B
P

E
L
2
S

T
S

T

R
A

N
S

L
A

T
IO

N

S
T

S

C
O

M
P

O
S

IT
IO

N

D
A

T
A

P

R
O

P
A

G
A

T
IO

N

S
T

S
 t

o

N
u
S

M
V

V
A

L
ID

IT
Y

A

N
A

L
Y

S
IS

V
E

R
IF

IC
A

T
IO

N

Fig. 6. The approach

5.3 Unordered Asynchronous Communications

While the previous model correctly describes the example in Fig. 2, it shows
problems with the example in Fig. 3. The reason is that the latter will work
correctly only if the order of messages is not relevant for consideration.

Such a model describes the systems where the order in which the messages
are sent and received is irrelevant.

Definition 7 (Unordered Asynchronous Compatibility). Let Σ̂1 and Σ̂2

be two extended STSs, t1 = (s1, σ1, s
′
1) ∈ R̂1 and t2 = (s2, σ2, s

′
2) ∈ R̂2.

Transitions t1 and t2 are compatible under unordered asynchronous commu-

nication model, written as t1 ≈u t2, if for any action symbol α appeared in σ1

there is distinct corresponding action symbol appearing in σ2.

This communication model is more liberal with respect to the previous in
the sense that it permits more behaviors in the analyzed system. However, this
requires a sophisticated queueing mechanism to be implemented in the BPEL
engine.

6 Implementing the Approach

A preliminary prototype of a verification tool based on the parameric commuin-
cation model presented in this paper has been implemented within the Astro
toolkit and is available as part of the project (http://www.astroproject.org).
Figure 6 represents the underlying architecture.

The tool consists of two modules. The first module, namely Translation mod-
ule, is used to transform the initial set of BPEL process specifications into a spec-
ification accepted by the NuSMVmodel checker [6] for further analysis. There
the input processes are transformed to the STS form; the extended product of
their skeletons is built; the product is completed by adding the data manipulation
operations and the result is emitted as NuSMVspecification. The specification
is then passed to the analysis module, which verifies the specification. There the
validity of the specification with respect to the given communication model is
checked and the properties verification is then performed.

The algorithm that translates BPEL into NuSMVspecification relies on the
following key consideration: in the extended composition it is not necessary to

Table 1. Verification results

Instance Model Translation Validity Deadlock LTL

Example 1 Synchronous 0.5sec 1sec (valid) 0.5 sec 0.5sec

Example 2 Synchronous 2sec 4sec (invalid) – –
Ordered 4sec 3sec (valid) 3sec 3sec

Example 3 Synchronous 4sec 5sec (invalid) – –
Ordered 8sec 5sec (invalid) – –
Unordered 9sec 5sec (valid) 5sec 4sec

consider all those extended transitions which contain as a prefix shorter transi-
tions. I.e., if t1 and t2 are transitions of the extended composition, and t1 � t2,
then t2 can be removed from the model without loosing behaviors. In the algo-
rithm, we generate extended transitions incrementally, detect the compatibility
as soon as it appears, and ignore longer transitions. This permits a finite sys-
tem representation of the composed system and allows for efficient verification
techniques to be applied. The only case when this approach may not work is
when the composition contains cycles. In this case, we force a termination in
the algorithm whenever an “incomplete” transition (in the sense of unmatched
outputs) tries to traverse a cycle more than once. This condition may lead to
consider invalid some scenarios that are actually valid. However, this problem
does not appear in a wide range of interaction scenarios and models, including
all non-cyclic protocols (such as those considered in Sect. 2), and all verifications
based on the synchronous communication model. Currently we are working on
a general solution for this problem.

We tested our approach on the different instantiations of VTA case study
introduced in Sect. 2. The ranges of the domain types used in the messages (e.g.
Flight, Time) were set to three values for each type. Although the examples
described in the paper are relatively simple, they still are considerably more
complex with respect to the set of samples presented in other tools (e.g. [8, 7]).
The size of the (reachable) state space ranges in the examples from 500 to 2200
states. The results of the verification are summarized in the Table 1. For the
valid systems also property verification was tested. Besides checking the models
for deadlocks, we checked also a property, specified as a Linear-time Temporal
Logic formula, that states that the User eventually finishes the process with
success if and only if both the Flight and Hotel processes eventually succeed.

7 Related Work and Conclusions

In this paper we presented a unified framework for the analysis and verification
of Web service compositions provided as BPEL specifications. The framework
is based on the special form of composition, namely extended parallel product,
that allows one to analyze whether the given system is valid under particular

communication model. We have shown how different examples of composed sys-
tems require increasingly sophisticated communication models, which can be
expressed in terms of out framework. The presented analysis approach allows
one to iteratively check the validity of the given system against different com-
munication models. Whenever the model is valid the actual verification of the
system can be performed where different properties of interest can be checked.

The problem of analysis of communication systems with (potentially infinite)
channels is widely studied in literature. Although the problem is undecidable in
general [4], there are a lot of works on restricted subclasses of such systems for
which certain problems were shown to be decidable (see e.g. [2]). In particular, an
interesting class of systems that can be represented using Petri Nets formalism is
widely used for analysis of asynchronous systems and workflows [14, 1]. Opposite
to these works we investigate different cases of bounded models and make an
attempt to prove the validity of the considered system under these models.

With respect to Web service analysis approaches, in particular BPEL pro-
cesses, several works were described. The closest to our approach are the tools
presented in [7] and [8]. The first one, namely LTSA-BPEL4WS, is based on
the process algebra formalisms and allows for the analysis of basic properties
of BPEL specifications, such as safety and progress checks. The tool currently
does not support the analysis of composition of several BPEL specifications and
was unable to handle complex specifications as those of the VTA case study.
Moreover, it is based on the synchronous communications model thus being re-
strictive with respect to the set of systems it is able to correctly analyze. On
the contrary, the WSAT tool [8] is equipped with the synchronizability analysis
techniques that allow to check whether the behavior of the system is valid un-
der synchronous communications semantics. However, the techniques currently
provided allow only for partial analysis. That is, if the analyzed system does not
pass the check it is not necessarily the case that the system is not synchroniz-
able. The reason is that the synchronizability analysis is based on sufficient but
not necessary conditions and that it ignores the information appearing in tran-
sitions conditions thus leading to spurious violations of the synchronizability.
Also the provided techniques do not exceed the limits of the synchronizability
analysis, and therefore do not allow for the reasoning about more sophisticated
communication models.

One can also refer to works of [16], where the analysis is performed basing on
Timed Automata, and of [5], inspired by process algebra notations. All these ap-
proaches exploit only the synchronous communication semantics, thus ruling out
a certain class of systems (e.g. systems with cancellation), which are important
in practice and can be managed in the proposed framework. On the contrary the
aim of our approach is to attempt to find an appropriate communication model
for the given system, under which it behaves correctly.

There are several directions for further research. We currently work on the
extension of the translation from BPEL to STS for better coverage of constructs
represented in the language. We also work on the optimizations of the validity
analysis algorithm and enrichment of the approach with the possibility to reason

about wider scope of communication models. Furthermore, we are interested
in application of “knowledge level” reasoning techniques in order to perform
the analysis of possibly infinite ranges of values and improve the verification
performance shown in the previous section.

References

1. W. M. P. van der Aalst. Challenges in Business Process Management: Verification
of Business Processing Using Petri Nets. Bulletin of the EATCS 80: 174-199, 2003.

2. P.A. Abdulla and B. Jonsson. Channel Representations in Protocol Verification
(Preliminary Version). In Proc. CONCUR’01, August 2001.

3. T. Andrews, F. Curbera, H. Dolakia, J. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weeravarana. Business Process
Execution Language for Web Services (version 1.1), 2003.

4. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of
the ACM, 2(5):323–342, April 1983.

5. M. Koshkina and F. Breugel. Modelling and Verifying Web Service Orchestration
by means of the Concurrency Workbench. Proceedings of the Workshop on Testing,
Analysis and Verification of Web Services (TAV-WEB), ACM SIGSOFT Software
Engineering Notes, 29(5), September 2004.

6. A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new symbolic
model checker. International Journal on Software Tools for Technology Transfer
(STTT), 2(4), 2000.

7. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based verification of Web
Service Compositions. In Proc. ASE’03, 2003.

8. X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Services. In Proc.
WWW’04, 2004.

9. S. Graham, S. Simenov, T. Boubez, G. Daniels, D. Davis, Y. Nakamura, and
R. Neyama. Building Web Services with Java: Making Sense of XML, SOAP,
WSDL and UDDI. Sams, 2001.

10. R. Khalaf, N. Mukhi, and S. Weerawarana. Service Oriented Composition in
BPEL4WS. In Proc. WWW’03, 2003.

11. J. Koehler and B. Srivastava. Web Service Composition: Current Solutions and
Open Problems. In Proc. of ICAPS’03 Workshop on Planning for Web Services,
2003.

12. S. Narayanan and S. McIlraith. Simulation, Verification and Automated Compo-
sition of Web Services. In Proc. WWW’02, 2002.

13. S. Nakajima. Model-checking verification for reliable web service. In Proc. OOP-
SLA’02 Workshop on OOWS, 2002.

14. J.L. Peterson. Petri Net Theory and the Modelling of Systems. Prentice-Hall,
1981.

15. M. Pistore, M. Roveri, P. Busetta. Requirements-Driven Verification of Web Ser-
vices. In Proc. WS-FM’04, ENTCS, 2004.

16. P. Geguang, Z. Xiangpeng, W. Shuling, and Q. Zongyan. Towards the Semantics
and Verification of BPEL4WS. In Proc. WS-FM’04, ENTCS, 2004.

