
Automated Composition of Semantic Web Services into
Executable Processes?

P. Traverso and M. Pistore

ITC-IRST - University of Trento
traverso@itc.it - pistore@dit.unitn.it

Abstract. Different planning techniques have been proposed so far which address the
problem of automated composition of web services. However, in realistic cases, the
planning problem is far from trivial: the planner needs to deal with the nondetermin-
istic behaviour of web services, the partial observability of their internal status, and
with complex goals, e.g., expressing temporal conditions and preference requirements.
We propose a planning technique for the automated composition of web services de-
scribed in OWL-S process models, which can deal effectively with nondeterminism,
partial observability, and complex goals. The technique allows for the synthesis of
plans that encode compositions of web services with the usual programming con-
structs, like conditionals and iterations. The generated plans can thus be translated
into executable processes, e.g., BPEL4WS programs. We implement our solution in a
planner and do some preliminary experimental evaluations that show the potentialities
of our approach, and the gain in performance of automating the composition at the
semantic level w.r.t. the automated composition at the level of executable processes.

1 Introduction

One of the big challenges for the taking up of web services is the provision of automated
support to the composition of service oriented distributed processes, in order to decrease
efforts, time, and costs in their development, integration, and maintenance. Currently, the
problem of the composition of web services is addressed by two orthogonal efforts. From
the one side, most of the major industry players propose low level process modeling and
execution languages, like BPEL4WS [1]. These languages allow programmers to imple-
ment complex web services as distributed processes and to compose them in a general way,
e.g., by interleaving the partial execution of different services with usual (concurrent) pro-
gramming control constructs, like if-then-else, while-loops, fork, choice, etc. However, the
definition of new processes that interact with existing ones must be done manually by pro-
grammers, and this is a hard, time consuming, and error prone task. From the other side,
research within the Semantic Web community proposes a top down unambiguos descrip-
tion of web services capabilities, e.g., in standard languages like DAML-S [2] and OWL-S
[10], thus enabling the possibility to reason about web services, and to automate web ser-
vices tasks, like discovery and composition. However, the real taking up of Semantic Web
Services for practical applications needs the ability of generating automatically composed
services that can be directly executed, in the style of BPEL4WS programs, thus reducing
effort, time and errors due to manual composition at the programming level.

Several works have proposed different automated planning techniques to address the
problem of automated composition (see, e.g., [18, 19, 22, 24]). However, the planning prob-
lem is far from trivial, and can be hardly addressed by “classical planning” techniques. In
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realistic cases, OWL-S process models describe nondeterministic behaviours of processes,
where the process outputs as well as inputs from external processes cannot be predicted
a priori of execution (e.g., a flight reservation service cannot know in advance whether a
reservation will be confirmed or cancelled). Moreover, the internal status of a service (e.g.,
whether there are still seats available in a flight) is not available to external services, and
the planner can only observe services invocations and responses. Finally, composition goals
need to express complex requirements that are not limited to reachability conditions (like
get to a state where both the flight and the hotel are reserved). Most often, goals need to ex-
press temporal conditions (e.g., do not reserve the hotel until you have reserved the flight),
and preferences among different goals (try to researve both the flight and the hotel, but if
not possible, make sure you do not reserve any of the two). As a consequence, automated
composition needs to interleave (the partial executions of) available services with the typical
programming language constructs such as conditionals, loops, etc., similarly to composed
services that are programmed by hand, e.g., in BPEL4WS.

In this paper, we propose a technique for the automated composition of web services de-
scribed in OWL-S, which allows for the automated generation of executable processes, e.g.,
written as BPEL4WS programs. Given a set of available services, we translate their OWL-S
process models, i.e., declarative descriptions of web service processes, into nondeterminis-
tic and partially observable state transition systems that describe the dynamic interactions
with external services. Goals for the service to be automatically generated are represented
in the EaGle language [11], a language with a clear semantics which can express complex
requirements. We can thus exploit the “Planning as Model Checking” approach based on
symbolic model checking techniques [14, 9, 6, 11, 4], which has been shown to provide a
practical solution to the problem of planning with nondeterministic actions, partial observ-
ability, and complex goals, and which has been shown experimentally to scale up to large
state spaces. As a result, the planning algorithm generates plans that are automata and that
can be translated to BPEL4WS code.

We implement the proposed techniques in MBP [3], a planner based on the planning as
model cheking approach, and perform an experimental evaluation. Though the results are
still preliminary, and deserve further investigation and evaluation, they provide a witness
of the potentialities of our approach. Moreover, we compare the experimental results with
those obtained by applying the same tecnnique directly to (state transition systems generated
from) BPEL4WS processes. The comparison shows that automated composition performed
at the high level of OWL-S process models is orders of magnitudes more efficient than the
one applied at the low level of executable processes, thus demonstrating experimentally a
practical advantage of the Semantic Web approach to web services.

The paper is structured as follows. In Section 2, we give an overview of the approach
and introduce an explanatory example that will be used all along the paper. In Section 3, we
explain how OWL-S process models can be translated into state transition systems, while in
Section 4 we describe the goal language. We explain how we do planning for web service
composition in Section 5. We provide a preliminary experimental evaluation in Section 6,
and a comparison with related work in Section 7.

2 Overview of the Approach

By automated composition we mean the task of generating automatically, given a set of
available web services, a new web service that achieves a given goal by interacting with
(some of) the available web services. More specifically, we take as our starting point the
OWL-S Process Model ontology [10], i.e., a declarative description of the program that
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Fig. 1. OWL-S based Automated Composition.

realizes the service. Given the OWL-S process model description of n available services
(W1, . . . , Wn), we encode each of them in a state transition system (ΣW1

, . . . , ΣWn
), see

Figure 1. State transition systems provide a sort of operational semantics to OWL-S process
models. Each of them describes the corresponding web service as a state-based dynamic
system, that can evolve, i.e., change state, and that can be partially controlled and observed
by external agents. This way, it describes a protocol that defines how external agents can
interact with the service.

From the point of view of the new composed service that has to be generated, say W ,
the state transition systems ΣW1

, . . . , ΣWn
constitute the environment in which W has to

operate, by receiving and sending service requests. They constitute what, in planning litera-
ture, is called a planning domain, i.e., the domain where the planner has to plan for a goal. In
our case, the planning domain is a state transition system Σ that combines ΣW1

, . . . , ΣWn
.

Formally, this combination is a synchronous product, which allows the n services to evolve
independently and in parallel. Σ represents therefore all the possible behaviours, evolutions
of the planning domain, without any control performed by the service that will be generated,
i.e., W .

The Composition Goal G (see Figure 1) imposes some requirements on the desired
behaviour of the planning domain. Given Σ and G, the planner generates a plan π that
controls the planning domain, i.e., interacts with the external services W1, . . . , Wn in a
specific way such that the evolutions satisfy the goal G. The plan π encodes the new service
W that has to be generated, which dynamically receives and sends invocations from/to
the external services W1, . . . , Wn, observes their behaviours, and behaves depending on
responses received from the external services. The plan π must therefore have the ability of
encoding normal programming constructs, like tests over observations, conditionals, loops,
etc. As we will see, π is encoded as an automaton that, depending on the observations and
on its internal state, executes different actions. We can translate π into process executable
languages, like BPEL4WS.

In the rest of the paper, we will describe step by step the automated composition task
introduced above through the following example.

Example 1. Our reference example consists in providing a furniture purchase & delivery
service, say the P&S service, which satisfies some user request. We do so by combining
two separate, independent, and existing services: a furniture producer Producer, and a de-
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Fig. 2. A Simple Example.

livery service Shipper. The idea is that of combining these two services so that the user
may directly ask the composed service P&S to purchase and deliver a given article at a
given place. To do so, we exploit a description of the expected interaction between the P&S
service and the other actors. In the case of the Producer and of the Shipper the interactions
are defined in terms of the service requests that are accepted by the two actors. In the case
of the User, we describe the interactions in terms of the requests that the user can send to
the P&S. As a consequence, the P&S service should interact with three available services:
Producer, Shipper, and User (see Figure 2). These are the three available services W1,
W2, and W3, which are described as OWL-S process models and translated to state transi-
tion systems. The problem is to automatically generate the (plan corresponding to the) P&S
service, i.e., W in Figure 1.

In the following, we describe informally the three available services. Producer accepts
requests for providing information on a given product and, if the product is available, it
provides information about its size. The Producer also accepts requests for buying a given
product, in which case it returns an offer with a cost and production time. This offer can
be accepted or refused by the external service that has invoked the Producer. The Shipper
service receives requests for transporting a product of a given size to a given location. If
delivery is possible, Shipper provides a shipping offer with a cost and delivery time, which
can be accepted or refused by the external service that has invoked Shipper. The User
sends requests to get a given article at a given location, and expects either a negative answer
if this is not possible, or an offer indicating the price and cost of the service. The user may
either accept or refuse the offer. Thus, a typical (nominal) interaction between the user,
the combined purchase & delivery service P&S, the producer, and the shipper would go as
follows:

1. the user asks P&S for an article a, that he wants to be transported at location l;
2. P&S asks the producer for some data about the article, namely its size, the cost, and

how much time does it take to produce it;
3. P&S asks the delivery service the price and time needed to transport an object of such

a size to l;
4. P&S provides the user an offer which takes into account the overall cost (plus an added

cost for P&S) and time to achieve its goal;
5. the user sends a confirmation of the order, which is dispatched by P&S to the delivery

and producer.



<process:CompositeProcess rdf:ID=”Shipper”>
<process:Sequence>
<process:AtomicProcess rdf:about=”#DoShippingRequest”/>
<process:CompositeProcess>

<process:IfThenElse>
<process:ifCondition rdf:resource=”#ShippingPossible”/>
<process:then>

<process:CompositeProcess>

<process:Choice>
<process:AtomicProcess rdf:about=”#AcceptShippingOffer”/>
<process:AtomicProcess rdf:about=”#RefuseShippingOffer”/>

</process:Choice>

</process:CompositeProcess>

</process:then>

</process:IfThenElse>

</process:CompositeProcess>

</process:Sequence>

</process:CompositeProcess>

<process:AtomicProcess rdf:ID=”DoShippingRequest”>
<process:Input rdf:ID=”size”>
<process:parameterType rdf:resource=”#Size”>

</process:Input>
<process:Input rdf:ID=”destination”>
<process:parameterType rdf:resource=”#Location”>

</process:Input>
<process:ConditionalOutput rdf:ID=”price”>
<process:coCondition rdf:resource=”#ShippingPossible”/>
<process:parameterType rdf:resource=”#Cost”>

</process:ConditionalOutput>
<process:ConditionalOutput rdf:ID=”duration”>
<process:coCondition rdf:resource=”#ShippingPossible”/>
<process:parameterType rdf:resource=”#Delay”>

</process:ConditionalOutput>
<process:ConditionalOutput rdf:ID=”na”>
<process:coCondition rdf:resource=”#NoShippingPossible”/>
<process:parameterType rdf:resource=”#NotAvailable”>

</process:ConditionalOutput>
</process:AtomicProcess>

<process:AtomicProcess rdf:ID=”AcceptShippingOffer> ...

<process:AtomicProcess rdf:ID=”RefuseShippingOffer> ...
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Fig. 3. The OWL-S Process Model and the State Transition System of the Shipper Service.

Of course this is only the nominal case, and other interactions should be considered, e.g.,
for the cases the producer and/or delivery services are not able to satisfy the request, or the
user refuses the final offer. At a high level, Figure 2 describes the data flow amongst our
integrated web service, the two services composing it, and the user. This can be perceived
as (an abstraction of) the WSDL description of the dataflow. �

3 From OWL-S Process Models to State Transition Systems

OWL-S process models [10] are declarative descriptions of the properties of web service
programs. Process models distinguish between atomic processes, i.e., non-decomposable
processes that are executed by a single call and return a response, and composite processes,
i.e., processes that are composed of other atomic or composite processes through the use of
control constructs such as sequence, if-then-else, while loops, choice, fork, ect.

Example 2. The OWL-S process model of the Shipper service (see Example 1) is shown
in Figure 3 (left). The OWL-S model has been slightly simplified for readability purposes,
by removing some (redundant) tags in the description of the processes. The Shipper ser-
vice is a composite service consisting of the atomic processes DoShippingRequest, Ac-
ceptShippingOffer, and RefuseShippingOffer. DoShippingRequest receives in input a
description of the Size and of the destination Location of the item to be delivered. The
conditional output models the fact that the service returns as output an offer only if the
shipping is possible, and returns a NotAvailable message otherwise. The offer includes
the price (Cost) and the duration (Delay) of the transportation. If the transportation is
possible (control construct IfThenElse), the shipper waits for a nondetermnistic external



decision (control construct Choice) that either accepts (AcceptShippingOffer) or refuses
(RefuseShippingOffer) the offer.

Similarly, we can model the interactions with the producer with a composition of atomic
processes AskProductInfo, DoProductRequest, AcceptProductOffer, and RefusePro-
ductOffer; and the interaction with the user with the processes DoP&SRequest and Eval-
uateOffer (with the latter process the user specifies whether an P&S offer is accepted or
not). �

We encode OWL-S process models as state transition systems, which describe dynamic
systems that can be in one of their possible states (some of which are marked as initial
states) and can evolve to new states as a result of performing some actions. A transition
function describes how (the execution of) an action leads from one state to possibly many
different states. System’s evolutions can be monitored through observations describing the
visible part of the system state. An observation function defines the observation associated
to each state of the domain.

Definition 1 (state transition system). A (nondeterministic, partially observable) state tran-
sition system is a tuple Σ = 〈S,A,O, I, T ,X〉, where:

– S is the set of states.
– A is the set of actions.
– O is the set of observations.
– I ⊆ S is the set of initial states; we require I 6= ∅.
– T : S × A → 2S is the transition function; it associates to each current state s ∈ S

and to each action a ∈ A the set T (s, a) ⊆ S of next states.
– X : S → O is the observation function.

State transition systems are nondeterministic, i.e., one action may result in several differ-
ent outcomes. This is modeled by the fact that the transition function returns sets of states.
Nondeterminism is needed since the system cannot often know a priori which outcome will
actually take place, e.g., whether it will receive a confirmation or a cacellation from an ex-
ternal service. Moreover, our state transition systems are partially observable, i.e., external
services can only observe part of their system state, e.g., its external communications can
be observed but other services do not have access to its internal status and variables. Partial
observability is modeled by the fact that different states may result in the same observation.

We associate to each available OWL-S process model describing a web service, a state
transition system according to Definition 1. Intuitively, this is done as follows. The states
S are used to codify the different steps of evolution of the service (e.g., what position has
been reached inside the composite process of the Shipper) and the values of the predi-
cates defined internally to the service (e.g., predicate ShippingPossible of Figure 3). The
actions A are used to model the invocation of the external atomic processes (e.g., DoShip-
pingRequest). The actions also model the invocations by the external actors of the services
that the composed service should provide (in our example, the invocation by the User of
service DoP&SRequest). In this case, two actions are necessary to model the reception
of the invocation (action acceptDoP&SRequest) and the corresponding response (action
answerDoP&SRequest). The observationsO are used to model the outputs of the invoked
external processes (and the inputs of the external invocations).

Example 3. In the case of the Shipper service process model (see Figure 3 (right)), the
states model the possible steps of the service: START, which holds initially, and Do-
ShippingRequest.done, AcceptShippingOffer.done, RefuseShippingOffer.done, as-



sociated to the intermediate phases of the composite process. The internal variables Ship-
pingPossible and NoShippingPossible describe the values of the corresponding condi-
tions in the OWL-S model. In Figure 3, we associate to each state the corresponding step in
the composite process and the predicates that are true in the state. For simplicity, in Figure 3,
we do not distinguish states that differ for internal variables corresponding to the parameters
of the service invocation.

The actions correspond to the invocation of the atomic processes DoShippingRequest,
AcceptShippingOffer, and RefuseShippingOffer. The most complicated action is the first
one: it has two parameters specifying the size and the destination location. Moreover, it has
two possible non-deterministic outcomes. The first one, corresponding to the case the ship-
per is able to do the delivery, leads to the state where condition ShippingPossible is true;
the output associated to this state corresponds to an assignment to the OWL-S conditional
outputs Cost and Delay. The second outcome, corresponding to the case the shipper is not
able to do the delivery, leads to the state where condition NoShippingPossible is true. �

The formal definition of the translation of an OWL-S process model into a state tran-
sition system is conceptually simple, but it is complicated by several technical details. For
this reason, and for lack of space, we do not present this definition here.1

4 Composition Goals

Composition goals express requirements for the service to be automatically generated. They
should represent conditions on the temporary evolution of services, and, as shown by the
next example, requirements of different strengths and preference conditions.

Example 4. In our example (see Figure 2), a reasonable composition goal for the P&S
service is the following:

Goal 1: The service should try to reach the ideal situation where the user has confirmed
his order, and the service has confirmed the associated (sub-)orders to the producer and
shipper services. In this situation, the data associated to the orders have to be mutually
consistent, e.g., the time for building and delivering a furniture shall be the sum of the
time for building it, and that for delivering it.

However, this is an ideal situation that cannot be enforced by the P&S service: the product
may not be available, the shipping may not be possible, the user may not accept the total
cost or the total time needed for the production and delivery of the item... We would like the
P&S service to behave properly also in these cases, and get to a consistent situation, where
the P&S confirms none of the two services for production and delivering, otherwise P&S is
likely, e.g., to loose money. More precisely, we have also the following goal:

Goal 2: The P&S service should absolutely reach a fall-back situation where every (sub-)order
has been canceled. That is, there should be no chance that the service has committed to
some (sub-)order if the user can cancel his order.

Some remarks are in order. First of all, there is a difference in the “strength” in which we
require Goal 1 and Goal 2 to be satisfied. We know that it may be impossible to satisfy Goal

1 The interested reader may refer to [20] for a detailed discussion of a translation similar to ours. In
that case, Petri nets are used as target models. The states of our state transition systems can be seen
as the markings in the Petri nets of [20].



1: we would like the P&S service to try (do whatever is possible) to satisfy the goal, but we
do not require that the service guarantees to achieve it in all situations. The case is different
for Goal 2: there is always a possibility for the P&S service to cancel the orders to the
producer and shipper, and to inform the user. We can require a guarantee of satisfaction of
this goal, in spite of any behavior of the other services. Moreover, Goal 1 and Goal 2 are not
at the same level of desire. Of course we would not like a P&S service that satisfies always
Goal 2 (e.g., by refusing all requests from the user) even when it would be possible to satisfy
Goal 1. We need then to express a strong preference for Goal 1 w.r.t. Goal 2. Informally, we
can therefore describe the composition goal as follows:

Composition Goal: Try to satisfy Goal 1, upon failure, do satisfy Goal 2. �

As the previous example shows, composition goals need the ability to express conditions on
the whole behaviour of a service, conditions of different strengths, and preferences among
different subgoals. The EAGLE language [11] has been designed with the purpose to satisfy
such expressiveness requirements. Let propositional formulas p ∈ Prop define conditions
on the states of a state transition system. Composition goals g ∈ G over Prop are defined
as follows:

g := p | g And g | g Then g | g Fail g | Repeat g |

DoReach p | TryReach p | DoMaint p | TryMaint p

Goal DoReach p specifies that condition p has to be eventually reached in a strong way,
for all possible non-deterministic evolutions of the state transition system. Similarly, goal
DoMaint q specifies that property q should be maintained true despite non-determinism.
Goals TryReach p and TryMaint q are weaker versions of these goals, where the plan is
required to do “everything that is possible” to achieve condition p or maintain condition q,
but failure is accepted if unavoidable. Construct g1 Fail g2 is used to model preferences
among goals and recovery from failure. More precisely, goal g1 is considered first. Only
if the achievement or maintenance of this goal fails, then goal g2 is used as a recovery or
second-choice goal. Consider for instance goal TryReach c Fail DoReach d. The sub-goal
TryReach c requires to find a plan that tries to reach condition c. During the execution of
the plan, a state may be reached from which it is not possible to reach c. When such a state
is reached, goal TryReach c fails and the recovery goal DoReach d is considered. Goal
g1 Then g2 requires to achieve goal g1 first, and then to move to goal g2. Goal Repeat g

specifies that sub-goal g should be achieved cyclically, until it fails. Finally, goal g1 And g2

requires the achievement of both subgoals g1 and g2. A formal semantics and a planning
algorithm for EaGLe goals in fully observable nondeterministic domains can be found in
[11].

Example 5. The EAGLE formalization of the goal in Example 4 is the following.
TryReach /* Goal 1 */
(AcceptProductOffer.done & AcceptShippingOffer.done &
EvaluateOffer.done & EvaluateOffer.accepted &
DoP&SRequest.price = DoShippingRequest.price + DoProductRequest.price &
DoP&SRequest.duration = DoShippingRequest.duration + DoProductRequest.duration)

Fail
DoReach /* Goal 2 */
(RefuseProductOffer.done & RefuseShippingOffer.done &
EvaluateOffer.done & not EvaluateOffer.accepted)

Propositions like AcceptProductOffer.done are used to describe the states of the plan-
ning domain Σ corresponding to specific states of state transition systems obtained from



the OWL-S processes (process Producer in our case). Propositions like DoShippingRe-
quest.price or EvaluateOffer.accepted refer to the values of the input/output messages
in service invocation. �

5 Automated Composition

The planner has two inputs (see Figure 1): the composition goal and the planning domain
Σ which represents all the ways in which the services (represented by) ΣW1

, . . . , ΣWn
can

evolve. Formally, this combination is a synchronous product, i.e., Σ = ΣW1
× . . . × ΣWn

.
The automated composition task consists in finding a plan that satisfies the composition
goal G over a domain Σ. We are interested in complex plans, that may encode sequential,
conditional and iterative behaviors, and are thus expressive enough for representing the flow
of interactions of the sysnthesized composed service with the other services and expressive
enough for representing the required observations over the other services. We therefore
model a plan as an automaton.

Definition 2 (plan). A plan for planning domain Σ = 〈S,A,O, I, T ,X〉 is a tuple π =
〈C, c0, α, ε〉, where:

– C is the set of plan contexts.
– c0 ∈ C is the initial context.
– α : C ×O ⇀ A is the action function; it associates to a plan context c and an observa-

tion o an action a = α(c, o) to be executed.
– ε : C × O ⇀ C is the context evolutions function; it associates to a plan context c and

an observation o a new plan context c′ = ε(c, o).

The contexts are the internal states of the plan; they permit to take into account, e.g., the
knowledge gathered during the previous execution steps. Actions to be executed, defined
by function α, depend on the observation and on the context. Once an action is executed,
function ε updates the plan context. Functions α and ε are deterministic (we do not consider
nondeterministic plans), and can be partial, since a plan may be undefined on the context-
observation pairs that are never reached during plan execution.

Example 6. The next table defines a fragment of a plan for a P&S service provider. For
simplicity, we describe a very selective plan that accepts requests only for one specific
product.

c ∈ C o ∈ Obs α(c, o) ε(c, o)

C0 — acceptDoP&SRequest C1
C1 product 6= Prod1 answerDoP&SRequest(NoAvailable) DONE
C1 product = Prod1 DoProductRequest(Prod1) C2
C2 na = NoAvailable answerDoP&SRequest(NoAvailable) DONE
C2 not acceptable(duration) answerDoP&SRequest(NoAvailable) C3
C2 acceptable(duration) answerDoP&SRequest(Cost2,Dur2) C4
C3 — RefuseProductOffer DONE
... ... ... ...

A P&S request from the user (action acceptDoP&SRequest in context C0) is immediately
refused if the required product is different from Prod1 (action answerDoP&SRequest
(NoAvailable) in context C1). Otherwise, an offer is requested to the producer (action Do-
ProductRequest (Prod1) in context C1). If the duration of the production is acceptable,



then an offer is forwarded to the user (action answerDoP&SRequest (Cost2,Dur2) in
context C2). If the duration is not acceptable, or if the product is not available, a negative
answer is sent to the user (action answerDoP&SRequest (NoAvailable) in contexts C3
and C4), and the offer of the producer is refused if necessary (action RefuseProductOffer
in context C3). With DONE we represent the terminal context of the plan. �

In the previous example, the contexts of the plan have been chosen arbitrarily. If the plan is
obtained from a composition goal, then the contexts correspond to the sub-formulas of the
goal. For instance, in a plan for the composition goal of Example 5 one would have some
contexts associated to Goal1 and other contexts associated to Goal2.

The execution of a plan over a domain can be described in terms of transitions between
configurations that describe the state of the domain and of the plan.

Definition 3 (configuration). A configuration for domain Σ = 〈S,A,O, I, T ,X〉 and
plan π = 〈C, c0, α, ε〉 is a pair (s, c) such that s ∈ S and c ∈ C. Configuration (s, c) may
evolve into configuration (s′, c′), written (s, c) → (s′, c′), if s′ ∈ T (s, α(c,X (s))) and
c′ = ε(c,X (s)). Configuration (s, c) is initial if s ∈ I and c = c0.

Intuitively, a configuration is a snapshot of the domain controlled by the plan. Due to the
nondeterminism in the domain, we may have an infinite number of different executions of a
plan. We provide a finite presentation of these executions with an execution structure, i.e, a
Kripke Structure [13] with configurations as states.

Definition 4 (execution structure). The execution structure corresponding to domain Σ

and plan π is the Kripke structure Σπ = 〈Q, Q0, R〉, where:

– Q is the set of configurations;
– Q0 ⊆ Q are the initial configurations;
– R ⊆ Q × Q are the transitions between configurations.

The execution structure Σπ represents the evolutions of the domain Σ controlled by the
plan π. It is the execution structure Σπ that must satisfy the composition goal G (see Figure
1). If Σπ |= G, we say that π is a valid plan for G on Σ. A formal definition of Σπ |= G

can be found in [11].
However, notice that when executing a plan, the plan executor cannot in general get

to know exactly what is the current state of the domain: the limited available access to
the internal state of each external service inhibits removing the uncertainty present at the
initial execution step, or introduced by executing nondeterministic actions. For instance,
in the case of the Shipper service describe in Figure 3, the executor has no access to the
values of predicates ShippingPossible and NoShippingPossible, even if it can infer these
values from the observable outcomes of action DoShippingRequest (namely, an offer or a
NoAvailable message).

In presence of partial observability, at each plan execution step, the plan executor has to
consider a set of domain states, each equally plausible given the initial knowledge and the
observed behavior of the domain so far. Such a set of states is called a belief state (or simply
belief ) [8, 6]. Executing an action a evolves a belief B into another belief B ′ which contains
all of the possible states that can be reached through a from some state of B. The available
sensing is exploited initially, and after each action execution: if observation o holds after
executing action a, the resulting belief shall rule out states not compatible with o. Thus in
general, given a belief B, performing an action a (executable in all the states of B) and
taking into account the obtained observation o gets to a new belief Evolve(B, a, o):

Evolve(B, a, o) = {s′ : ∃s ∈ B.s′ ∈ T (s, a) ∧ X (s′) = o}.



Planning in this framework consists in searching through the possible evolutions of initial
beliefs, to retrieve a conditional course of actions that leads to beliefs that satisfy the goal.
The search space for a partially observable domain is what is called a belief space; its nodes
are beliefs, connected by edges that describe the above Evolve function. The search in a
partially observable domain can be described as search inside a fully observable “belief-
level” domain ΣK whose states are the beliefs of Σ, and whose nondeterministic transition
function mimics Evolve .

Definition 5 (knowledge level domain). The knowledge level domain for domain Σ is a
tuple ΣK = 〈B,A,O, IB , TB ,XB〉, where:

– B = {B ⊆ S : B 6= ∅ ∧ ∀s, s′ ∈ B.X (s) = X (s′)}.
– A and O are defined as in the domain Σ.
– IB = {B ⊆ S : B 6= ∅ ∧ ∃o ∈ O.(∀s ∈ S.s ∈ B ⇔ (s ∈ I ∧ X (s) = o))} is the set

of initial beliefs, i.e. all the beliefs compatible with I, and with some initial observation
value.

– TB : B × A → 2B is the transition function; it maps the current belief B ∈ B and
an action a ∈ A such that T (s, a) 6= ∅ for all s ∈ B into the set of next beliefs
TB(B, a) = {Evolve(s, a, o) : o ∈ X (T (B, a))}.

– XB : B → O associates to each belief B the observation XB(B) = X (s) for all s ∈ B.

Thus, algorithms for planning under partial observability can be obtained by suitably recast-
ing the algorithms for full observability on the associated knowledge-level domain. Actu-
ally, the following result holds [7]:

Fact 6 Let Σ be a ground-level domain and g be a knowledge-level goal for Σ (i.e., a goal
expressing conditions on the beliefs reached during plan execution). Let also ΣK be the
knowledge level domain for Σ and gK be the goal interpreting g on ΣK . Then π is a valid
plan for g on Σ if, and only if, π is a valid plan for gK on ΣK .

Thus, given a composition goal and a planning domain, solving the problem implies us-
ing dedicated algorithms for planning under partial observability with EAGLE goals, or,
alternatively, planning for the fully observable associated knowledge level domain, and in-
terpreting the goal as a ground goal (rather than as a knowledge-level goal). We pursue this
latter approach, so that we can reuse existing EAGLE planning algorithms under full ob-
servability [11]. We generate the knowledge level domain by combining the state transition
systems defined previously. Similarly to what happens for the ground level domains, this
computation consists of a synchronous product. Finally, we plan on this domain with re-
spect to an EAGLE goal. Fact 6 guarantees that the approach outlined above for planning
under partial observability with EAGLE goals is correct and complete. A potential problem
of this approach is that, in most of the cases, knowledge-level domains are exponentially
larger than ground domains. In [6, 5], efficient heuristic techniques are defined to avoid gen-
erating the whole (knowledge-level) planning domain. These techniques can be extended to
planning with EAGLE goals.

We have therefore the algorithms for generating a valid plan π that satisfies the com-
position goal. Since π is an automaton, it can be easily translated to executable process
languages, like BPEL4WS. The generated code is not human-readable, however, it reflects
the contexts defined in the plan (see Definition 2), which in turn reflect the structure of the
goal. This makes it possible to monitor the execution of the BPEL4WS code and detect, for
instance, when the primary goal of a composition (e.g., Goal 1 in Example 4) fails and a
subsidiary goal (e.g., Goal 2) becomes active.



With refuse Without refuse
Building K Planning Result Planning Result

CASE 1 0.2 sec. 0.1 sec. YES 0.1 sec. NO
CASE 2 0.3 sec. 0.3 sec. YES 0.3 sec. NO
CASE 3 1.5 sec. 5.1 sec. YES 3.4 sec. NO
CASE 4 3.8 sec. 19.5 sec. YES 17.9 sec. NO
CASE 5 4.1 sec. 65.9 sec. YES 71.5 sec. NO
CASE 6 12.3 sec. 2899 sec. YES 3885 sec. NO

Fig. 4. Results of the Experiments.

6 Experimental Evaluation

In order to test the effectiveness and the performance of the approach proposed in this paper,
we have conducted some experiments using the MBP planner.

We have run MBP on six variants of the purchase and ship case study, of different
degrees of complexity. In the easiest case, CASE 1, we considered a reduced domain with
only the user and the shipper, and with only one possible value for each type of objects
in the domain (article, location, delay, cost, size). In CASE 2 we have considered all three
protocols, but again only one possible value for each type of object. In CASE 3 we have
considered the three protocols, with two objects for each type, but removing the parts of the
shipper and producer protocols concerning the size of the product. CASE 4 is the complete
example discussed in Section 2. In CASE 5, one more actor is added to the domain, which
is responsible of the set-up of the furniture, once it has been delivered. CASE 6, finally,
extends CASE 5 by allowing three values for each type of object. We remark that CASE 1
and CASE 2 are used to test our algorithms, even if they are admittedly unrealistic, since
the process knows, already before the interaction starts, the article that the user will ask and
the cost that will be charged to the user. In the other cases, a real composition of services
is necessary to satisfy the goal. In all six cases we have experimented also with a variant
of the shipper service, which does not allow for refusing an offer. This variant makes the
composition goal unsatisfiable, since we cannot unroll the contract with the shipper and
satisfy the recovery goal (see Example 5) in case of failure of the primary goal.

The experiments have been executed on an Intel Pentium 4, 1.8 GHz, 512 MB memory,
running Linux 2.4.18. The results, in Fig. 4, report the following information:

– Building K: the time necessary to build the three knowledge-level domains.
– Planning: the time required to find a plan (or to check that no plan exists) starting from

the knowledge-level domains.
– Result: whether a plan is found or not.

The last two results are reported both in the original domains and in the domains without the
possibility of refusing a shipping offer. The experiments show that the planning algorithm
returns the expected results. The performance is satisfactory: also in CASE 5, where the
composition involves four external services, the composition is built in about one minute.
The time required to obtain the composition grows considerably if we increase the number
of available values for each object (CASE 6). Indeed, the different values are encoded into
the domain states and have a strong impact on the size of the search space. A different, more
advanced management of these values, not requiring a direct encoding into the states, would
mitigate this effect.

We perform a further set of experiments where we apply the same approach to the com-
position of web services at the level of BPEL4WS code. We translate the BPEL4WS code



With refuse Without refuse
Building K Planning Result Planning Result

CASE 1 2 sec. 6 sec. YES 5 sec. NO
CASE 2 5 sec. 30 sec. YES 13 sec. NO
CASE 3 289 sec. 2008 sec. YES 1642 sec. NO
CASE 4 1058 sec. 16536 sec. YES 13327 sec. NO

Fig. 5. Results of the Experiments with BPEL4WS Domains.

implementing the three services into state transition systems. The translation is technically
different from (but conceptually similar to) the one described for OWL-S models, and is
described in [21]. We perform this translation for the same cases considered in the previous
experiment. Then we run the same MBP planning algorithm on the resulting planning do-
mains. The results are reported in Fig. 5 (in CASE 5 and 6 we have stopped the planner after
more than 5 hours of execution time). The comparison shows that automated composition
performed at the level of OWL-S process models is much more efficient than composition
applied at the level of executable processes. For instance, in CASE 4, both the time needed
to generate the planning domain and the time for planning are three orders of magnitude
higher for BPEL4WS domains. The reason is that OWL-S process models are at a higher
level of abstraction w.r.t. BPEL4WS process models. Planning with BPEL4WS domains is
done at the level of single messages between processes, while planning with OWL-S mod-
els is at the level of atomic web services. These results are a practical demonstration of the
fact that OWL-S process models shift the representation at the right level of abstraction for
composing web services, and show a pratical advantage of the Semantic Web approach to
web services composition.

7 Conclusions, Related and Future Work

In this paper, we have shown how OWL-S process models can be used to generate automat-
ically new composed services that can be executed, e.g., by execution enginees for modern
process modeling and execution languages, like BPEL4WS. This is achieved by translating
OWL-S process models to nondeterministic and partially observable state transition systems
and by generating automatically a plan that can express conditional and iterative behaviors
of the composition. Our preliminary experimental evaluation shows the potentialities of the
approach, and the practical advantage of automated composition at the semantic level w.r.t.
the one at the level of executable processes.

Different planning approaches have been proposed for the composition of web services,
from HTNs [24] to regression planning based on extensions of PDDL [12], to STRIPS-like
planning for composing services described in DAML-S [22], but how to deal with non-
determinism, partial observability, and how to generate conditional and iterative behaviors
(in the style of BPEL4WS) in these frameworks is still an open issue. In [18], web service
composition is achieved with user defined re-usable, customizable, high level procedures
expressed in Golog. The approach is orthogonal to ours: Golog programs can express pro-
gramming control constructs for the generic composition of web service, while we gener-
ate automatically plans that encode web service composition through programming control
constructs. In [17], Golog programs are used to encode complex actions that can represent
DAML-S process models. However, the planning problem is reduced to classical planning
and sequential plans are generated for reachability goals. In [20], the authors propose an
approach to the simulation, verification, and automated composition of web services based



on a translation of DAML-S to situation calculus and Petri Nets, so that it is possible to rea-
son about, analyze, prove properties of, and automatically compose web services. However,
the automated composition is again limited to sequential composition of atomic services for
reachability goals, and does not consider the general case of possible interleavings among
processes and of extended business goals.

The work in [16] is close in spirit to our general objective to bridge the gap between the
semantic web framework and the process modeling and executuion languages proposed by
industrial coalitions. However, [16] focuses on a different problem, i.e., that of extending
BPEL4WS with semantic web technology to facilitate web service interoperation, while the
problem of automated composition is not addressed.

Other planning techniques have been applied to related but somehow orthogonal prob-
lems in the field of web services. The interactive composition of information gathering
services has been tackled in [23] by using CSP techniques. In [15], given a specific query
of the user, an interleaving of planning and execution is used to search for a solution and to
re-plan when the plan turns out to violate some user constraints at run time.

In the future, we aim at a solution that avoids the computationally complex powerset
construction of the knowledge level domain, by providing algorithms for natively planning
with extended goals under partial observability. Some preliminary results in this directions
for a different goal language are presented in [7]. Moreover, we plan to integrate the auto-
mated composition task with reasoning techniques for discovery and selection at the level of
OWL-S service profiles. Finally, we intend to test our approach over realistic case studies in
projects for private companies and for the public administration we are currently involved
in.
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