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Abstract

We propose a novel planning framework for the automated
composition of web services. We consider services that
are specified and implemented in industrial standard lan-
guages for business processes modeling and execution, like
BPEL4AWS. These languages describe web services whose
behavior is intrinsically asynchronous. For this reason, the
key aspect of our framework is the modeling of asynchronous
planning problems. In the paper we describe the framework
and propose a planning approach that is based on state of
the art techniques for planning under uncertainty. Our ex-
periments show that this approach can scale up to signifi-
cant cases, i.e., to cases in which the manual development
of BPELAWS composed services is not trivial and is time con-
suming.

Introduction

Planning is one of the most promising techniques for the au-
tomated composition of web services. Several recent works
in planning have addressed different aspects of this pnoble
see, e.g., (Blythe, Deelman, & Gil 2003; Vet al. 2003;
Dermott 1998; Sheshagiri, desJardins, & Finin 2003; Mcll-
raith & Son 2002; Mcllraith & Fadel 2002). In these works,

automated composition is described as a planning problem:
existing services can be used to construct the planning do-

main, composition requirements can be formalized as plan-

with external web services, whileoncreteBPELAWS pro-
grams can be used to implement the internal process, i.e.,
the part that is not visible to external services, and that ca
be executed by standard engines, such as the Active BPEL
Open Engine or the Oracle BPEL Process Manager. In this
context, automated composition amounts to generating au-
tomatically concret®PEL4WS programs that compose web
services published with abstraBPEL4AWS specifications,
thus reducing significantly development efforts, time, and
errors.

Unfortunately, the planning problem corresponding to
the automated composition @&PEL4AWS processes is far
from trivial, since it poses strong requirements on the kind
of planning techniques that can be used. Web services
must be modeled with nondeterministic and partially observ
able behaviors, and composition requirements must be ex-
pressed with extended goal@oehler & Srivastava 2002;
Koehler, Tirenni, & Kumaran 2002; Pistoet al. 2004;

Hull et al. 2003; Berardiet al. 2003). A preliminary solu-
tion taking into account these aspects is presented irofRist
et al. 2004).

A further crucial characteristic of web services has been
again widely recognized (Fu, Bultan, & Su 2004; Bultan
et al. 2003; Fosteret al. 2003), but has never been ad-
dressed by planning for web service composition: web ser-
vices interactions are intrinsicallgsynchronous Indeed,
eachBPELAWS process evolves independently and with un-

ning goals, and planning algorithms can be used to generate predictable speed, synchronizing with the other processes

plans that compose the published services.
A challenge for planning is the automated composition
of services that are specified and implemented in industrial

only through asynchronous message exchanges. Message
gueues are used in practical implementations to guarantee
that processes don’t loose messages that they are not ready

standard languages for business process modeling and exe+o receive.

cution, such agPeL4wWS (Andrewset al. 2003). These lan-

guages have been designed specifically for web service com-

position (Khalaf, Mukhi, & Weeravarana 200BpPEL4WS,
for instance, is used both for the publishing and for the exe-
cution of compositions. More preciselgbstractBPELAWS
specifications are used to publish the interaction protocol

*This work is partially funded by the MIUR-FIRB project
RBNEOQ0195K5, “Knowledge Level Automated Software Engineer-
ing”, and by the MIUR-PRIN 2004 project “Advanced Atrtificial
Intelligence Systems for Web Services”.

Copyright © 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In this paper, we address the problem of the automated
composition of web services by means pfanning in
asynchronous domains More precisely, given a set of
BPELAWS abstract specifications of published web services,
and given a composition requirement, we generate auto-
matically aBPEL4WS concrete process that interact asyn-
chronously with the published services. We deploy the gen-

LIn this paper, by extended goals we mean goals that are not
limited to reachability goals, i.e., sets of states, but that can ex-
press, e.g., temporal conditions, like CTL (Emerson 1990), and/or
preference conditions, likeAGLE (Dal Lago, Pistore, & Traverso
2002).
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Figure 1. The approach.
eratedBPEL4WS process and execute it on an available exe- Overview
cution engine, thus integrating the planning for web servic o i icall
composition task in the software development cycle. ur goal is to automatically generate a new senite
(called thecomposite servigethat interacts with a set of
We achieve these results as follows. We maiatL4ws published web servicesV;, ..., W, (called the compo-

abstract processes as state transition systems that cagecha N€Nt services) and satisfies a given composition require-
state either by asynchronously receiving messages (called Ment- More specifically (see Figure 1) we assume that
input action3, or by sending messagesuput actiony or component services are describeadgasL4ws abstract pro-

by evolving internally (by means of anternal actior). In- cesses. Given BPELAWS abstract processesy, ..., Wy,

put and output actions define the protocol that is published, the BPEL2STS module automatically translates each of

while internal actions represent the internal behaviot tha ~ (hem into_astate transition systeniSTS from now on)
not visible to external parties. Wy, -, D, Intuitively, eachXy, is a compact rep-
resentation of all the possible behaviors, evolutions ef th

We model asynchronous interactions by abstracting away COMPonent servicéV;. EachXyy, is described in terms of
the specific mechanism of input queues. To this purpose, states, input and output actions, and internal actlons-.
we require that, when a message is sent to a process, either  We then construct garallel STSY that combines
it can be received immediately, or the process will be able Zws,---,Zw,. Formally, this combination is a parallel
to consume it after a sequence of internal action executions Product, which allows the services to evolve concurrently.
This way, we assume that processes re'y ona machinery thatZH I‘epresents therefore all the pOSSIb|e behaVIOI‘S, evalstio

prevents messages from being lost, but we are independent©f the different component services, without any control by
from any specific implementation. and interaction with the composite service that will be gen-

erated, i.e.JV. FromX, we generate a planning domdh

We then devise a formal framework for planning in asyn- that s passed in input to the planner (modsiies2DOMm).
chronous domains under this modeling assumption, and The second kind of input to the planner consists of the
show how planning can be applied to generate executable requirements for the composite service. They are formdlize
and deployablePEL4ws code. We finally implement the ~ as a goalp in EAGLE, a language for expressing extend
proposed framework and experiment with it, showing that planning goals (Dal Lago, Pistore, & Traverso 2002). While
the proposed approach improves dramatically over the per- the framework presented in this paper is general, and works
formance of previous solutions for synchronous domains re- With other kinds of extended goals, e.g., with CTL goals
ported in (Pistorest al. 2004). (Emerson 1990), we choos@ELE since, as we will see, it

is better suited to express composition requirements.

The paper is structured as follows. We first give an GivenD andp, MBP generates a plan that is then trans-
overview of the approach and introduce an explanatory ex- lated into a STS.. X. encodes the new servid& that
ample. We then describe the modeling of abstex®L4wS has to be generated, which dynamically receives and sends
processes and of composition requirements. Next we de- invocations from/to the composite servidés, ..., W, and
scribe the formal framework and discuss the planning prob- behaves depending on responses received from the external
lem and its solution. We finally report the results of our ex-  servicesY.. is such that. > 3| satisfies the requirement
perimental evaluation and discuss a comparison with tlate  whereX. > represents all the evolutions of the component
work. services as they are controlled by the composite service.



The STSY. is then given in input to the TS2BPEL mod-
ule which translates it into a concreteEL4ws process that
implements the desired composite web service.

Running Example

In the rest of the paper, we will describe our approach
through the following example.

Example 1 Our reference example consists in providing a 3.

furniture purchase & delivery service, say tR&S service.

We do so by combining two separate, independent, and exist-
ing services: a furniture producé?roducer, and a delivery
serviceShipper. The idea is that of combining these two
services so that the user may directly ask the composed ser-
vice P&S to purchase and deliver a given item at a given
place. To do so, we exploit a description of the expected in-
teraction between thB&S service and the other actors. In
the case of th@roducer and of theShipper the interactions

are defined in terms of the service requests that are accepted
by the two actors. In the case of thiser, we describe the
interactions in terms of the requests that the user can send t
the P&S. As a consequence, tiR&S service should inter-

act with three available service®roducer, Shipper, and
User (see Figure 2). These are the three available services
W1, Ws, andWs, which are described asPEL4WS abstract
processes and translated to STSs bysheL2sTs module

in Figure 1. The problem is to automatically generate the
concreteBPELAWS implementation of th@&S service, i.e.,

W in Figure 1.

In the following, we describe informally the three avail-
able services. Th@roducer accepts requests for provid-
ing information on a given product and, if the product is
available, it provides information about its size. TReo-
ducer also accepts requests for buying a given product, in
which case it returns an offer with a cost and production
time. This offer can be accepted or refused by the external
service that has invoked tHeroducer. The Shipper ser-
vice receives requests for transporting a product of a given
size to a given location. If delivery is possible, tBbip-
per provides a shipping offer with a cost and delivery time,
which can be accepted or refused by the external service that
has invoked th&hipper. TheUser sends requests to get a
given item at a given location, and expects either a nega-
tive answer if this is not possible, or an offer indicating th
price and the time required for the service. The user may
either accept or refuse the offer. Thus, a typical intei@cti

w1
info_request(ltem)
info(Size)
request(item)
offer(Cost,Delay)
not_avail
ack/nack

w3 Producer
Purchase
&

Ship

request(ltem,Loc)

offer(Cost,Delay)
not_avail
ack/nack

User

(P&S) request(Size,Loc)
offer(Cost,Delay)
not_avail

ack/nack

Shipper

-
w2

Figure 2: The Purchase & Ship Example.

between the user, the combined purchase & delivery service
P&S, the producer, and the shipper would go as follows:

1. the user askP&S for an items, that he wants to be de-

livered at location;

2. P&S asks the producer for some data about the item,

namely its size, the cost, and how much time does it take
to produce it;

P&S asks the delivery service the price and time needed
to transport an object of such a sizeito

4. P&S provides the user an offer which takes into account

the overall cost (plus an added cost 8&S) and time to
produce and deliver the item;

5. the user sends a confirmation of the order, which is dis-

patched byP&S to the delivery and producer.

Of course this is only the nominal case, and other interac-
tions should be considered, e.g., for the cases the producer
and/or delivery services are not able to satisfy the request
or the user refuses the final offer.

At a high level, Figure 2 describes the data flow amongst
our integrated web service, the two services composing it,
and the user. O

Abstract processes as state transition systems

BPELAWS (Andrewset al. 2003) provides an operational de-
scription of the (stateful) behavior of web services on top
of the service interfaces defined in theirsbL specifica-
tions. An abstracBPELAWS description identifies the part-
ners of a service, its internal variables, and the operation
that are triggered upon the invocation of the service by some
of the partners. Operations include assigning variabtes, i
voking other services and receiving responses, forking par
allel threads of execution, and nondeterministically pigk
one amongst different courses of actions. Standard impera-
tive constructs such as if-then-else, case choices, apg,loo
are also supported.

We encodeBPEL4WS processes astate transition sys-
temswhich describe dynamic systems that can be in one
of their possiblestates(some of which are marked asi-
tial stateg and can evolve to new states as a result of per-
forming someactions Actions are distinguished imput
actions which represent the reception of messagesput
actions which represent messages sent to external services,
and a special action, calledinternal action The actionr
is used to represent internal evolutions that are not \@sibl
to external services, i.e., the fact that the state of theesys
can evolve without producing any output, and independently
from the reception of inputs. &ansition relationdescribes
how the state can evolve on the basis of inputs, outputs, or of
the internal actiorr. Finally, alabeling functionassociates
to each state the set of propertiésop that hold in the state.
These properties will be used to define the composition re-
quirements.

Definition 2 (State transition system (STS))
A state transition syster® is a tuple(S,S",Z,0, R, L)
where:

e S is the finite set of states;
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PROCESS
Shipper;
TYPE
Size; Location; Cost; Delay;
STATE
pc: { START, getRequest, checkAvailablend checkAvailable,
_sequence, _sequence, prepareOffer, sendOffer, waitAnswer,
_endwaitAnswer,_.empty.1, prepareNotAvail, sendNotAvail,
SUCC, FAIL};
customerreqsize: SizeU { UNDEF };
customerregloc: Locationu { UNDEF };
offer_delay: Delayu { UNDEF };
offer_cost: CostJ { UNDEF };
INIT
pc = START;
offer_delay = UNDEF;
offer_cost = UNDEF;
customermeqsize = UNDEF;
customerregloc = UNDEF;
INPUT
request(s: Size, I: Location);
ack;
nack;
OUTPUT
offer(d: Delay, c: Cost);
not.avail;
TRANS
pc = START -[TAU]-> pc = getRequest;
pc = getRequest -[INPUT request(customeqsize,
customerreg.loc)]-> pc = checkAvailable;
pc = checkAvailable -[TAU]> pc =_sequencsd,;
pc = checkAvailable -[TAU]> pc =_sequence;
pc =_sequencel -[TAU]-> pc = prepareOffer;
pc = prepareOffer -[TAU]> pc = sendOffer,
offer_cost IN Cost,
offer_delay IN Delay;
pc = sendOffer -[OUTPUT offer(offecost, offecdelay)]->
pc = waitAnswer;
pc = waitAnswer -[INPUT nack]> pc = FAIL;
pc = waitAnswer -[INPUT ack]> pc =_empty.1;
pc=_emptyl -[TAU]-> pc =_endwaitAnswer;
pc =_endwaitAnswer -[TAU]-> pc =_endcheckAvailable;
pc =_endcheckAvailable -[TAU]> pc = SUCC;
pc =_sequence -[TAU]-> pc = prepareNotAvail;
pc = prepareNotAvail -[TAU]> pc = sendNotAvail;
pc = sendNotAvail -[OUTPUT naavail]-> pc = FAIL;

Figure 3: The STS for th8hipper process.

e SY C Sis the set of initial states;

7 is the finite set of input actions;

O is the finite set of output actions;

e RC S X (ZUOU{r}) x Sis the transition relation;
o L :S — 2P7or js the labeling function.

We assume that infinite loops eftransitions cannot appear

in the system. Indeed, an infiniteloop would describe a
divergent behavior of the system, i.e., a behavior where the
service is not interacting with the environment. We also as-
sume that there is no state which originates both input and
output transitions.

We have formally defined a translation that associates a
STS to each component service, starting from its abstract
BPELAWS specification. This translation is performed au-
tomatically by thesPEL2STS module in Figure 1. For the
moment, the translation is restricted to a subserEL4wWS
processes: we support aPEL4AWS basic and structured
activities like invoke, receive, sequence, switch, while,
flow (without links) and pick; moreover we supporas-
signments andcorrelation. Our next steps will be dealing
with scopes and withfault, event andcompensation han-
dlers. We omit the formal definition of the translation, since
it is outside the scope of the paper.

Example 3 Figure 3 shows the graphical representation
(using Active BPEL) of the abstraetPEL4ws process of
the Shipper, and its corresponding STS. The set of states
S models the steps of the evolution of the process and the
values of its variables. The special variabp€ imple-
ments a “program counter” that holds the current execu-
tion step of the service (e.daC has valueget Request
when the process is waiting to receive a shipping request,
and valuecheckAvai | abl e when it is ready to check
whether the shipping is possible). The other variables (e.g
of fer del ay, of fer _cost) correspond to those used
by the process to store significant information. In the atiti
statesSY all the variables are undefined bpC that is set to

START.

The evolution of the process is modeled through a set of
possible transitions. Each transition defines its applitghb
conditions on the source state, its firing action, and the des
tination state. For instance,pC = checkAvai | abl e
-[TAJ - > pc = _sequence 1" states that an action
7 can be executed in stagheckAvai | abl e and leads
to the state Sequence_l. We remark that eacHRANS
clause of Figure 3 corresponds to different elements in the
transition relationR: e.g., “pc = checkAvai | abl e
-[TAJ-> pc = sequence 1’ generates different



elements ofR, depending on the values of variables
cust oner _r eq.si ze andcust oner req.| oc.

According to the formal model, we distinguish among
three different kinds of actions. The input acticghsnodel
all the incoming requests to the process and the informa-
tion they bring (i.e.r equest is used for the receiving of
the shipping request, whil@CK models the confirmation of
the order andnack its cancellation). The output actiorfs
represent the outgoing messages (i@t _avai | is used
when the shipping is not supported by the process, while
of f er is used to bid the transportation of an item at a par-
ticular price). The actiorr is used to model internal evolu-
tions of the process, as for instance assignments and deci-
sion making (e.g., when ttghipper process is in the state
checkAvar | abl e and performs internal activities to de-
cide whether the shipping is possible, or when, in the state
prepar eQf er, it must obtain the shipping price and de-
lay).

Finally, the properties of the STS are expressions of the
form <vari abl e> = <val ue>, and the labeling func-
tion is the obvious one.

The definition of STS provided in Figure 3 is parametric
w.r.t. the typesS ze, Locat i on, Gost, and el ay used
in the messages. In order to obtain a concrete STS and to
apply the automated synthesis techniques described later i

this paper, finite ranges have to be assigned to these types.

We are currently adopting the approach of assigning very
small ranges to the types, namely ranges with only two el-
ements. We will discuss the impacts of this choice in the
discussion of the experimental evaluation. O

Composition requirements as extended goals
Consider the following example.

Example 4 We want the composite&S service to“sell
items at home”. This means we want the&S service

to reach the situation where the user has confirmed his or-
der, and the service has confirmed the corresponding (sub-
)orders to the producer and shipper services. However, the
product may not be available, the shipping may not be pos-
sible, the user may not accept the total cost or the total time
needed for the production and delivery of the item... We can-
not avoid these situations, and we therefore cannot ask the
composite service to guarantee this requirement. Neverthe
less, we would like thB&S service totry (do whatever is
possible) to satisfy it. Moreover, in the case thell items

at home” requirement is not satisfied, we would like that the
P&S service does not commit to an order for production or
for delivery, since we do not want the service to buy an item
that will be never delivered, as well we do not want to spend
money for a delivering service when there is no item to de-
liver. Let us call this requiremerihever a single commit”.

Our global requirement would therefore be something like:

try to “sell items at home”;
upon failure,
do “never a single commit”.

Notice that the secondary requiremefibdver a single
commit”) has a different strength w.r.t. the primary one

(“sell items at home”). We write “do” satisfy, rather than
“try” to satisfy. Indeed, in the case the primary require-
ment is not satisfied, we want the secondary requirement to
be guaranteed.

We need a formal language that can express requirements
as those of the previous example, including conditions of
different strengths (like'try” and “do”), and preferences
among different (e.g., primary and secondary) requiresient
For this reason, we cannot use well known temporal logics
like LTL or CTL (Emerson 1990), that have been used in
other frameworks to formalize requirements for automated
synthesis, but that are unable to describe such requiresment
We use instead the &5 LE language, which has been de-
signed with the purpose to satisfy such expressivéness
detailed definition and a formal semantics for the@&_E
language can be found in (Dal Lago, Pistore, & Traverso
2002). Here we just explain howAESLE can express the
composition requirement of the running example.

Example 5 TheEAGLE formalization of the requirement is
the following.

TryReach
user . pc=SUJ3CA pr oducer . pc=SU3C\
shi pper . pc=SUCA
user.of fer del ay =
add_del ay(producer. of f er del ay,
shi pper . of fer del ay) A
user. of fer_cost =
add_cost (producer . of f er cost,
shi pper . of fer _cost)
Fail DoReach
user . pc=FAl L A producer . pc=FA La
shi pper. pc=FA L

The goal is of the form TryReach ¢ Fail DoReach d".
TryReach c¢ requires a service that tries to reach condition

¢, in our case the conditiotsell items at home”. During

the execution of the service, a state may be reached from
which it is not possible to reach e.g., since the product is
not available. When such a state is reached, the requirement
TryReach c fails and the recovery conditionoReach d, in

our case‘never a single commit” is considered. |

Composition Problem

The automated composition problem has two inputs
(see Figure 1): the formal composition requirement
and the parallel STSS, which represents the services
Swys ..., 2w, . We now formally define thearallel prod-

uct of two STSs, which models the fact that both systems
may evolve independently, and which is used to genéiate
from the component web services.

2However, the results presented in this paper are valid also in
the case a temporal logic like CTL or LTL is chosen to formalize
requirements.



Definition 6 (parallel product)

Let Y1 <81,8?,11701,R1,£1> and Yo
<SQ, SQO,IQ, 02, Ra, £2> be two STSs Wlttfl UOl) n (IQ @]
g)g)d: (). The parallel product:; || 35 of 3; and¥; is de-
ined as:

1|82 = (S1x82, Y x S5, T1UT2, 01U, R1|| Rz, L1]|L2)

where:

o ((s1,82),a,(sh,s2)) € (R1||R2) if (s1,a,s1) € Ru;

° <(§317 52), a, (81, 8/2)> (S (R1HR2) if <82, a, S/2> € Ra;

and ([,1 H[:z)(sh 82) = [,1(81) @] [,2(32).

The system representing (the parallel evolutions of) tme-co

ponent service®y, ..., W, of Figure 1 is formally defined

asy =Zw, || ... | Zw,. _ B
We remark that this definition only applies to the specific

case where inputs/outputs Bf and those oE, are disjoint.

This is a reasonable assumption in the case of web service
composition, where the different components are indepen-

dent (e.g., in thé®&S domain, there is no direct communi-

cation between user, producer, and shipper). It is however
possible to extend the approach to the more general case

where ¥; and X, can send messages to each other (i.e.
(Z; U O1) N (Zo U O3) # 0) by modifying in a suitable
way the definition of parallel product.

The automated composition problem consists in generat-

ing a STSX.. that controlsX by satisfyingp. We now de-
fine formally the STS describing the behaviors of a STS
when controlled by:...

Definition 7 (controlled system)

Let s (8,8 7,0,R,L) and X.
(8:,8°,0,7,R.,Ly) be two state transition systems,
where Ly(s.) = ( for all s, € S.. The ST, > ¥,
describing the behaviors of systethwhen controlled by
Y., is defined as:

VoYX =(S.x8,8 x8T,0,R.>R,L)

where

o ((sc,8),7,(s.,8)) € (Re>R)If (s, 7,8.) € Re;
o ((8¢,9),7,(8c,8)) € (Re>R)If (s,7,8) €R;

o ((sc,8),a,(s.,8")) € (Re>R), witha # T, if

(seya,8.) € Reand(s,a,s’) € R.

Notice that we require that the inputsXf coincide with the
outputs ofY and vice-versa. Notice also that, although the

systems are connected so that the output of one is associate

to the input of the other, the resulting transitions7n >
‘R are labelled by input/output actions. This allows us to
distinguish the transitions that correspond-tactions of%.
or X from those deriving from communications between

andX. Finally, notice that we assume that the plan has no

labels associated to the states.

A STS . may not be adequate to control a syst&mn
Indeed, we need to guarantee that, when&veperforms
an output transition, thel is able to accept it, and vice-
versa. We define the condition under which a statd %

accept a messageif there is some successeft of s in X,

reachable frons through a chain of transitions, such that
can perform an input transition labelled with Vice-versa,
if state s has no such successdr and message is sent to
¥, then a deadlock situation is reached.

In the following definition, and in the rest of the paper, we
denote byr-closurés) the set of the states reachable from
s through a sequence eftransitions, and by-closurd.S)
with S C S the union ofr-closurés) on alls € S.

Definition 8 (deadlock-free controller)

Let ¥ (8,8°,7,0,R,L) be a STS and=.
(8:,8%,0,T,R., Ly) be a controller fors. . is said to
bedeadlock fredor X if all states(s., s) € S. x S that are
reachable from the initial states af.. > X. satisfy the follow-
ing conditions:

e if (s,a,s’) € R with a € O then there is some’, €
T-closurgs.) such that(s’, a, s/) € R for somes € S,;
and

o if (sc,a,s.) € R, with a € T then there is some’ €
T-closurgs) such that(s’, a, s”) € R for somes” € S.

In a web service composition problem, we need to gen-
' erate &%, that guarantees the satisfaction of a composition
requiremenp (see Figure 1). This is formalized by requiring
that the controlled system.. > X3 must satisfyp, which is
defined in terms of the executions that> 3 can perform.
So, for instance, ip = DoReachp with p a state condition,
then we need to check that all executiongpt ¥ eventu-
ally reach a “configuration” that satisfies conditiprwhile
if p = DoMaint ¢ then we need to check that conditigis
satisfied in all “configurations” reached by all executiofis o
> X,
In ouder to define formally whert, > ¥ satisfiesp,

we need to define first the executionsXf > ¥. In do-
ing this, we need to take into account that the state tran-
sition systemY; models a domain that is only partially
observable by>.. That is, at execution time, the com-
posite serviceX,. cannot in general get to know exactly
what is the current state of the component services mod-
eled byXy,, ..., Xw,. Consider for instance the STS cor-
responding to th&hipper (see Figure 3). The composite
P&S service has no access to the values of the shipper’s
internal variables, and can only deduce their values from
the messages exchanged with tBRipper. This uncer-
tainty has two different sources. The first one is the stan-
Cgard source of uncertainty in planning, namely the pres-

nce of non-deterministic transitions (e.g., the twéran-
sitions of theShipper from “pc = checkAvai | abl e,
which model the fact the shipping may be possible or not).
The second source of uncertainty is due to the fact that we
are modeling an asynchronous framework and that, there-
fore, it is not possible for thé?&S to know when in-
ternal 7 transitions are performed in th8hipper. Due
to this uncertainty, after a messagéequest (s, 1)”

3We remark that, if there is such a succesg€af s, a deadlock
can still occur. This can happen if a different chainrdfansitions

is able to accept a message according to our asynchronousis executed froms that leads to a stat€’ for which a cannot be

model, which abstracts away queues. We assumes tbeat

executed anymore. In this case, the deadlock is recogniz€t in



has been sent to th8hipper, it is impossible to dis-
tinguish whether the shipper is still checking whether
the delivery is possible gCc = checkAvai | abl e),

or whether this task has terminated positivelpC(is
_sequence. ], preparedfer, orsend(% fer)orneg-
ativeg (C is__sequence.2, prepareNot Avai |, or
sendNot Avai | ). This uncertainty disappears only when
an“of fer”ora“not avai |
P&S.

In the definition of the executions &> (and, more in
general, of a state transition systéihwe take into account
this uncertainty by considering, at each step of the execu-
tion, a set of possible states, each equally plausible given
the partial knowledge that we have of the system. Such a set
of states is called &elief state or simply belief The ini-
tial belief for the execution is the set of initial stat§% of
Y. This belief is updated whenev&r performs an observ-
able (input or output) transition. More precisely,Bf C S
is the current belief and an actiene Z U O is observed,
then the new belieB’ = Evolve B, a) is defined as follows:

s € Evolve B, a) if, and only if, there is some statéreach-
able from B by performing a (possibly empty) sequence of
T transitions, such thats’, a,s) € R. That is, in defining
Evolve B, a) we first consider every evolution of statesin
by internal transitions-, and then, from every state reach-
able in this way, their evolution caused by

Definition 9 (belief evolution)
Let B C S be a belief on some state transition systgm
We define the evolution d? under actiona as the belief
B’ = Evolveé B, a), where

Evolvg B, a) = {s’ : 3s € 7-closurd B).(s,a,s’) € R}.

In the definition of goal satisfaction, we use beliefs to
describe the different “configurations” reached during-exe
cution. In order to characterize goal satisfaction, we need
to define when a belieB satisfies a given state property
p. In planning under partial observabilityg is said to sat-
isfy p simply if all statess € B satisfyp. The definition
becomes more complex in our asynchronous setting, du
to the presence of transitions. Let us consider again the
Shipper. After a request message has been sent to the ship-
per, it is not yet possible to predict whether the shipping ca
be fulfilled or not; therefore, we expect that conditidds
= preparedfer andpc = not,gval | abl eare both
false inB. On the other hand, after an acknowledge message
has been received by the shipper, it is unavoidable to reach

" message is received by the

e

a successful state; therefore, we want to be able to conclude

that conditionpC = is true in the corresponding be-
lief. Informally, we are assuming that the executionrof
transitions cannot be postponed forever. Therefore, if the
execution ofr transitions is guaranteed to reach a state sat-
isfying a given condition, then we can assume that the con-
dition holds also in belief stat&. Conversely, if there is
some sequence af transitions that does not contain states
satisfyingp and that cannot be further extended with other
7 transitions so thap is reached, then the propernyis not
satisfied inB.

Definition 10 (belief satisfying a property)
LetY: = (5,8Y,7,0,R, L) be a STSp € Prop be a prop-

erty forX, and B C S be a belief. We say thd® satisfies
p, written B =y p, if the following condition holds. Let
80,81, - -,y be such thaty € B, (s;,7,si+1) € R and
either s,, has no outgoing transitions or there exists;;
such that(s,,, a, s,+1) With a # 7. Thenp € L(s;) for
some) < i < n.

We are now ready to define the STS that defines the exe-
cutions of¥.>3 and, more in general, of a STS We call
it “belief-level” STS, since its states are beliefsd®fand its
transitions describe belief evolutions.

Definition 11 (belief-level system)
LetY = (5,8, 7,0, R, L) be a STS. The corresponding
belief-level STS i85 = (Si, S, Z, O, Rz, Ls), Where:

e Si are the beliefs of reachable from the initial belief
S9;

° ng = {SO};

e transitionsR; are defined as follows: if Evoly&, a)
B’ # () for somea € ZU O, then(B, a, B') € Rp;

o L5(B)={p€ Prop: B s p}.

We remark that a belief-level STS is a very restricted case of
STS, since it only has one initial state, there are-riansi-
tions, and, for all belief$3 and action there is at most one
belief B’ such that B, a, B') € Rp. For these reasons, it is
straightforward to re-interpret oB the definitions of goal
satisfaction proposed in the literature for (fully obsdnieg
non-deterministic domains (e.g., strong and strong cyclic
reachability goals (Cimatet al. 2003), LTL and CTL goals
(Pistore & Traverso 2001), and the most relevant for our pur-
poses, BGLE goals (Dal Lago, Pistore, & Traverso 2002)).
In the following, we writeXz |= p whenever the belief-level
STSX g satisfies goap.

We can now characterize formally a (web service) com-
position problem.

Definition 12 (composition problem)

LetXq,...,X, be a set of state transition systems, and let
p be a composition requirement. The composition problem
for 34,...,%, andp is the problem of finding a controller
Y. that is deadlock-free and such thag = p whereXs is

the belief-level STS &. > (X1 || ... || Z»).

Once the STSE, has been generated, it is translated into
BPEL4AWS. This translation is performed by component
STS2BPEL of Figure 1.

Planning domain, problem and solution

We now show how we can define the composition problem
in terms of a planning problem for extended goals and with
nondeterminism. We choose to translate the composition
problem to a planning problem under full observability in
the belief space. This allows us to use efficient planning al-
gorithms based on symbolic model checking.

The definitions of planning domains and plans are taken,
with minor modifications, from (Pistore & Traverso 2001).
We recall that a fully observable non-deterministic plamni
domain is defined as a tuple = (S,S°, A, T, L), whereS
is the finite set of states artf C S is the subset of initial
states,A is the finite set of actions] € S x A x S'is



the transition relation and : S — Prop is the labelling
function.

We now formally define the planning domain associated
toa STS.

Definition 13 (planning domain)

Let ¥ (8,8°7,0,R,L) be a STS and let
Y5 (Ss,S2,Z,0,R5,Ls) be the corresponding
belief-level state transition system according to Defini-
tion 11. The planning domain correspondingXois D =
(8p, 8%, Ap, Tp, L), Where:

e Sp =385 x (OU{x})andS% = S x {x};
e transitions7p are defined as follows:
— if (B,i,B’) € R withi € T then:
((B,0),4,(B', %)) € Tp;
— if (B,0o', B’) € R withi € 7 then:
((B,o0),*,(B',0")) € Tp;

o Lo((B.0)) = Ls(B).

When transforming a STS into a planning domain, we first
have to move to the belief level, that is, each state of the do-
main corresponds to a whole belief state of the starting stat
transition system. This is necessary to handle partial ob-
servability in the STS, and to allow for applying algorithms
working in fully observable domains. A second transforma-
tion applied in the construction of the planning domain is
that outputs are moved from the transitions into the stdtes o
the domain. This is obtained by defining a state of a plan-
ning domain as a paiB, o), whereo is the output received
during the last transition (a special marlks used if the last
transition has been an input).

Existing planning algorithms can thus be used to obtain
plans for a domairD and for a given goal. We recall that a
plant = (C,c°, a, €) is defined by a set of execution con-
texts C, one of which,c?, is the initial one, by an action
evolution (partial) functionr : C' x S — A and by a con-
text evolution (partial) functiom : C' x S — C.

The execution of a plam (C,, a, €) on a domain
D = (8,8 A,T,L) is defined in term of configurations,
i.e., of pairs(c,s) € C x S. The initial configurations
are those of the forngc?, s%), with s° € S°. In configu-
ration (c, s) the plan executes actien= a(c, ), if defined,
and evolves into the set of configuratiofs, s’), where
(s,a,s') € T andd = €(c,s). We say that a plan is ex-
ecutable if, for all configurationéc, s) reachable from the
initial ones, ifa = «a(c, s) is defined, then alse(c, s) is
defined, and: is executable 3.

Theexecution structuref a plant over a domairD is the
automaton consisting of all reachable configurations, eher
each statdc, s) is labelled according taC(s). A plan is
said to satisfy the goal if the goal is true on the execution
structure.

The final step is then to transform a planinto a STS.
The following definition explains how this is done.

Definition 14 (system of a plan)
Let >, X5, and D be defined as in Definition 13, and let
7 = (0, a,¢) be a plan forD. The STS corresponding

to 7 is defined as followsY, = (S,,8%,0,Z, R, Ly),
where:

e S, =Cx8zx(0OU{x})

o SY={c"} x 8% x {x}

e R is defined as follows:

—if a(c,(B,0)) = i # xandc = ¢(c (B,0)),
then ((c, B,0),i,(c',B’,x)) € R, where B’ =
Evolve B, i);

—if a(e,(B,0)) = x and ¢ = €(¢, (B,0)), then

{(¢, B,0),0',(c,B’,0")) € Ry forall o’ and B’ # 0
such thatB’ = Evolve B, o').

According to this definition, the STS corresponding to the
plan mimics very strictly the execution structure fBrand

m, except for the necessity to describe the outputs on the
transitions.

We remark that, in general, the STS obtained from a plan
according to Definition 14 may not be a deadlock free con-
troller for the starting STS. (see Definition 8). However,
there are conditions ol that guarantee not only that, is
deadlock free, but also that, satisfies a given composition
requirementp on X wheneverr is a solution to planning
goal p on planning domairD. The conditions that guaran-
tee these properties are that there is no belief in which both
inputs and outputs are possible, and that, when it is the con-
troller’s turn, we need to be sure that the domain will be able
to process all messages the controller can decide to send.

Definition 15 (controllable system)

LetY be a STS and let be the corresponding belief-level
state transition system. We say thais controllable if all
beliefsB in Xz satisfy the following conditions:

e if Evolve B, 0) # () for someo € O, then EvolvéB, i) =
fforall i € Z;

e if Evolvg B, i) # () for somei € Z, then EvolveéB, o) =
() forall o € O;

o if EvolveB,i) # () for somei € Z, then, for eachs €
7-closurg B) there is some&’ € r-closurgs) and some
states” € S such tha(s’, 4, s”) € R.

We remark that this constraint removes possible solutions.
That is, there are service composition problems for which
there exist solutions according to Definition 12, but that do
not satisfy the conditions in Definition 15. Still, these eon
ditions are very reasonable in the field of web services. In-
deed, the requirement that inputs and outputs are not inter-
mixed in the same belief state correspond to the assumption
that, in the interaction with a web service, we always know
if the service is waiting for an invocation, or whether it is
going to send an answer to a previous invocation. The re-
quirement that the same set of inputs is available from all
states corresponds to the assumption that, in any moment,
we know what are the valid invocations that we can per-
form on a service. All the examples of web services from
real world applications that we have been working on re-
spect these assumptions and can hence be composed using
the approach outlined above.

We are now ready to state the correspondence results be-
tween planning problems and composition problems.



Lemma 16 (controller/plan executability) Let > be a # of com- model planning
deadlock-free STS and I8z, D be defined as in Defini- ponents | construction

tion 13. Letr be a plan forD and X, be the corresponding P& S 3 8.4 sec. 1.0 sec.
STS. Ifr is executable oD, thenY . is executable oix. P& S, BANK 4 39.6 sec.] 35.4sec.
Theorem 17 (controller/plan equivalence)Let ¥~ be a wmol 5| 187.5sec. 31.6sec.
deadlock-free STS and 1815, D be defined as in Defini- WMO2 5| 173.1sec.| 48.6sec.
tion 13. wMO3 5] 174.9sec. 120.6 sec.

If plan 7 is a solution for domairD and goalg, andX,;
is the STS corresponding 19 thenX . > 3 = ¢ holds.

Moreover, if there is somE,. such thatt. > ¥ | g, then
there exists some that is a solution for domai® and goal
g (and hence; > % |= g holds). As far as we know, the framework for planning in asyn-

Theorem 17 states that we can use planning algorithms hronous domains presented in this paper is new, and has
for fully-observable nondeterministic domains and exeghd ~ N€Ver been proposed before. Different automated planning

goals (e.g., EGLE) to do automated composition. This al- techniques have been proposed to tackle the problem of ser-

lows us to exploit existing techniques based on symbolic ViC® composition, see, e.g., (Ve al. 2003; Dermott 1998;

model checking that are powerful enough to solve the au- Sheshagiri, desJardins, & Finin 2003). However, none of
tomated composition problem and can do it efficiently, as these can deal with the problem that we address in this paper,
shown in the next section. where the planning domain is nondeterministic, partially o

servable, and asynchronous, and goals are not limited to
reachability conditions.

Other planning techniques have been applied to related
t somehow orthogonal problems in the field of web ser-

Figure 4: Experiments with different applications.

Conclusions and Related Work
In this paper, we have presented a novel framework for bu

planning for the cdomposmon ﬁf asyr;chronOBSE]E4vr\]/s vices. The interactive composition of information gathgri
processes. In order to test the performance of the pro- services has been tackled in (Thakkar, Knoblock, & Ambite
pose% te_chnlquea'vf\;e have q?anIJctedl s&vezjal ex_penmer&ts,zoos) by using CSP techniques. Works in the field of Data
;ogzlt e(:)rfmg t\k/)vlo ! eretnt et‘rt('j'cf'a sca al' Et:. om%ms, and - and Computational Grids are more and more moving toward
problems extracted Irom realistic Web SErvice o problem of composing complex workflows by means of

%??S'mls/ astT P gp\;vgjogctsegrcg/ -r efsoliltrsea%%r;usbgf fsopuancde o E’s'?l‘g%igg) and scheduling techniques (Blythe, Deelman, &
: . : G _

here we only discuss the realistic domains. . . .
We first consideredP&S, the example explained in the Planning for the automated discovery and composition of
. semantic web services, e.g., based on OWL-S, is used in

previous sections, and an extension of it that introduces a X i ! -
: : : (Mcllraith & Son 2002; Mcllraith & Fadel 2002; Narayanan
third party, theBank, that is delegated to receive the money & Mcllraith 2002). These works do not take into account

from the client. Then we considered a case study taken behavioral d ini t web . lik h
from a real e-government application we are developing for ehavioral descriptions of web Service, like our approac
does withsPEL4WS.

a private company. We aim at providing a service that im- X

plements a (public) waste management offieav0), i.e. The work in (I-_|u||et al. 2003) presents a formal frame-

a service that manages user requests to open sites for theWork for composing e-services from behavioral descrifgion
disposal of dangerous waste. We consider three variants 9iven in terms of automata. This work focuses on the the-
of this domain, corresponding to an increasing interleav- ©retical foundations, without providing practical implem

ing between the different services. Automated composition tations. Moreover, the considered e-composition problem
is very fast, in all cases, as presented in Table 4, and dra- IS fundamentally c_jlffe_rent from ours, since it is seen as the
matically improves over the solution presented in (Piseare ~ Problem of coordinating the executions of a given set of
al. 2004), which only is able to tackle the simpler model, available services. 'No concrete and e>'<e<.:utable processes
with a model construction time of more than 13.000 sec- ¢an be generated with that approach. This is the main differ-
onds, and a planning time of more than 3.000 seconds. This €nce also with the work described in (Beraedial. 2003).
improved scalability is due to our reasonable modeling of ~ More in general, our work shares some ideas with
asynchronous interactions among services, which takes int work on the automata-based synthesis of controllers (see,
account that message queues are used irBral4ws en- e.g., (Pnueli & Rosner 1989; Vardi 1995)). Indeed, the com-
gines, but which does not commit to any specific implemen- posed service can be seen as a module that controls an envi-
tation. We remark that here, just as in (Pistetel. 2004), ronment which consists of the published services. However,
data types are defined to have binary ranges. This solution also in this case, the work focuses on theoretical foundatio
guarantees a good performance and, at least in the consid-and does not provide practical implementations for the-auto
ered examples, it is not restrictive, in the sense that the au mated compositions of web services.

tomatically synthesized web service can be easily adapted Some preliminary work that applies the idea of “planning
to work with different (even unbounded) ranges for these via symbolic model checking” to the automated composi-
types. We are currently investigating the formal condision tion of web services is presented in (Pistateal. 2004).

that guarantee this property. We improve substantially on this work by providing an ad-



equate modeling of asynchronoBg8EL4AWS processes, by
generating concreteBPEL4WS processes that can be actu-
ally implement web services interactions, and by definitely
improving the performances of the plan generation.

In the future, we plan to adopt techniques for planning at
the knowledge level in the style of (Petrick & Bacchus 2002)
to address the problem of associating finite ranges to the to
data types. We also plan to investigate techniques for fur-
ther improving the scalability. In particular, we are going
to experiment well known techniques for avoiding the com-
putationally complex construction of parallel state titios
systems. Finally, we plan to extend the work to the auto-
mated composition of semantic web services, e.g., destribe
in owL-s (OWL-S 2003) orwsmo (WSMO 2004), along
the lines of the work done in (Traverso & Pistore 2004).
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