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Abstract

We propose a novel planning framework for the automated
composition of web services. We consider services that
are specified and implemented in industrial standard lan-
guages for business processes modeling and execution, like
BPEL4WS. These languages describe web services whose
behavior is intrinsically asynchronous. For this reason, the
key aspect of our framework is the modeling of asynchronous
planning problems. In the paper we describe the framework
and propose a planning approach that is based on state of
the art techniques for planning under uncertainty. Our ex-
periments show that this approach can scale up to signifi-
cant cases, i.e., to cases in which the manual development
of BPEL4WS composed services is not trivial and is time con-
suming.

Introduction
Planning is one of the most promising techniques for the au-
tomated composition of web services. Several recent works
in planning have addressed different aspects of this problem,
see, e.g., (Blythe, Deelman, & Gil 2003; Wuet al. 2003;
Dermott 1998; Sheshagiri, desJardins, & Finin 2003; McIl-
raith & Son 2002; McIlraith & Fadel 2002). In these works,
automated composition is described as a planning problem:
existing services can be used to construct the planning do-
main, composition requirements can be formalized as plan-
ning goals, and planning algorithms can be used to generate
plans that compose the published services.

A challenge for planning is the automated composition
of services that are specified and implemented in industrial
standard languages for business process modeling and exe-
cution, such asBPEL4WS (Andrewset al. 2003). These lan-
guages have been designed specifically for web service com-
position (Khalaf, Mukhi, & Weeravarana 2004).BPEL4WS,
for instance, is used both for the publishing and for the exe-
cution of compositions. More precisely,abstractBPEL4WS
specifications are used to publish the interaction protocol
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with external web services, whileconcreteBPEL4WS pro-
grams can be used to implement the internal process, i.e.,
the part that is not visible to external services, and that can
be executed by standard engines, such as the Active BPEL
Open Engine or the Oracle BPEL Process Manager. In this
context, automated composition amounts to generating au-
tomatically concreteBPEL4WS programs that compose web
services published with abstractBPEL4WS specifications,
thus reducing significantly development efforts, time, and
errors.

Unfortunately, the planning problem corresponding to
the automated composition ofBPEL4WS processes is far
from trivial, since it poses strong requirements on the kind
of planning techniques that can be used. Web services
must be modeled with nondeterministic and partially observ-
able behaviors, and composition requirements must be ex-
pressed with extended goals1 (Koehler & Srivastava 2002;
Koehler, Tirenni, & Kumaran 2002; Pistoreet al. 2004;
Hull et al. 2003; Berardiet al. 2003). A preliminary solu-
tion taking into account these aspects is presented in (Pistore
et al. 2004).

A further crucial characteristic of web services has been
again widely recognized (Fu, Bultan, & Su 2004; Bultan
et al. 2003; Fosteret al. 2003), but has never been ad-
dressed by planning for web service composition: web ser-
vices interactions are intrinsicallyasynchronous. Indeed,
eachBPEL4WS process evolves independently and with un-
predictable speed, synchronizing with the other processes
only through asynchronous message exchanges. Message
queues are used in practical implementations to guarantee
that processes don’t loose messages that they are not ready
to receive.

In this paper, we address the problem of the automated
composition of web services by means ofplanning in
asynchronous domains. More precisely, given a set of
BPEL4WS abstract specifications of published web services,
and given a composition requirement, we generate auto-
matically a BPEL4WS concrete process that interact asyn-
chronously with the published services. We deploy the gen-

1In this paper, by extended goals we mean goals that are not
limited to reachability goals, i.e., sets of states, but that can ex-
press, e.g., temporal conditions, like CTL (Emerson 1990), and/or
preference conditions, like EAGLE (Dal Lago, Pistore, & Traverso
2002).
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Figure 1: The approach.

eratedBPEL4WS process and execute it on an available exe-
cution engine, thus integrating the planning for web service
composition task in the software development cycle.

We achieve these results as follows. We modelBPEL4WS
abstract processes as state transition systems that can change
state either by asynchronously receiving messages (called
input actions), or by sending messages (output actions), or
by evolving internally (by means of aninternal action). In-
put and output actions define the protocol that is published,
while internal actions represent the internal behavior that is
not visible to external parties.

We model asynchronous interactions by abstracting away
the specific mechanism of input queues. To this purpose,
we require that, when a message is sent to a process, either
it can be received immediately, or the process will be able
to consume it after a sequence of internal action executions.
This way, we assume that processes rely on a machinery that
prevents messages from being lost, but we are independent
from any specific implementation.

We then devise a formal framework for planning in asyn-
chronous domains under this modeling assumption, and
show how planning can be applied to generate executable
and deployableBPEL4WS code. We finally implement the
proposed framework and experiment with it, showing that
the proposed approach improves dramatically over the per-
formance of previous solutions for synchronous domains re-
ported in (Pistoreet al. 2004).

The paper is structured as follows. We first give an
overview of the approach and introduce an explanatory ex-
ample. We then describe the modeling of abstractBPEL4WS
processes and of composition requirements. Next we de-
scribe the formal framework and discuss the planning prob-
lem and its solution. We finally report the results of our ex-
perimental evaluation and discuss a comparison with related
work.

Overview

Our goal is to automatically generate a new serviceW
(called thecomposite service) that interacts with a set of
published web servicesW1, . . . ,Wn (called the compo-
nent services) and satisfies a given composition require-
ment. More specifically (see Figure 1) we assume that
component services are described asBPEL4WS abstract pro-
cesses. Givenn BPEL4WS abstract processesW1, . . . ,Wn,
the BPEL2STS module automatically translates each of
them into astate transition system(STS from now on)
ΣW1

, . . . ,ΣWn
. Intuitively, eachΣWi

is a compact rep-
resentation of all the possible behaviors, evolutions of the
component serviceWi. EachΣWi

is described in terms of
states, input and output actions, and internal actions.

We then construct aparallel STSΣ‖ that combines
ΣW1

, . . . ,ΣWn
. Formally, this combination is a parallel

product, which allows then services to evolve concurrently.
Σ‖ represents therefore all the possible behaviors, evolutions
of the different component services, without any control by
and interaction with the composite service that will be gen-
erated, i.e.,W . FromΣ‖, we generate a planning domainD
that is passed in input to the planner (moduleSTS2DOM).

The second kind of input to the planner consists of the
requirements for the composite service. They are formalized
as a goalρ in EAGLE, a language for expressing extend
planning goals (Dal Lago, Pistore, & Traverso 2002). While
the framework presented in this paper is general, and works
with other kinds of extended goals, e.g., with CTL goals
(Emerson 1990), we choose EAGLE since, as we will see, it
is better suited to express composition requirements.

GivenD andρ, MBP generates a planπ that is then trans-
lated into a STSΣc. Σc encodes the new serviceW that
has to be generated, which dynamically receives and sends
invocations from/to the composite servicesW1, . . . ,Wn and
behaves depending on responses received from the external
services.Σc is such thatΣc . Σ‖ satisfies the requirementρ,
whereΣc.Σ‖ represents all the evolutions of the component
services as they are controlled by the composite service.



The STSΣc is then given in input to theSTS2BPEL mod-
ule which translates it into a concreteBPEL4WS process that
implements the desired composite web service.

Running Example
In the rest of the paper, we will describe our approach
through the following example.

Example 1 Our reference example consists in providing a
furniture purchase & delivery service, say theP&S service.
We do so by combining two separate, independent, and exist-
ing services: a furniture producerProducer, and a delivery
serviceShipper. The idea is that of combining these two
services so that the user may directly ask the composed ser-
vice P&S to purchase and deliver a given item at a given
place. To do so, we exploit a description of the expected in-
teraction between theP&S service and the other actors. In
the case of theProducer and of theShipper the interactions
are defined in terms of the service requests that are accepted
by the two actors. In the case of theUser, we describe the
interactions in terms of the requests that the user can send to
theP&S. As a consequence, theP&S service should inter-
act with three available services:Producer, Shipper, and
User (see Figure 2). These are the three available services
W1, W2, andW3, which are described asBPEL4WS abstract
processes and translated to STSs by theBPEL2STS module
in Figure 1. The problem is to automatically generate the
concreteBPEL4WS implementation of theP&S service, i.e.,
W in Figure 1.

In the following, we describe informally the three avail-
able services. TheProducer accepts requests for provid-
ing information on a given product and, if the product is
available, it provides information about its size. ThePro-
ducer also accepts requests for buying a given product, in
which case it returns an offer with a cost and production
time. This offer can be accepted or refused by the external
service that has invoked theProducer. TheShipper ser-
vice receives requests for transporting a product of a given
size to a given location. If delivery is possible, theShip-
per provides a shipping offer with a cost and delivery time,
which can be accepted or refused by the external service that
has invoked theShipper. TheUser sends requests to get a
given item at a given location, and expects either a nega-
tive answer if this is not possible, or an offer indicating the
price and the time required for the service. The user may
either accept or refuse the offer. Thus, a typical interaction
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Figure 2: The Purchase & Ship Example.

between the user, the combined purchase & delivery service
P&S, the producer, and the shipper would go as follows:

1. the user asksP&S for an itemi, that he wants to be de-
livered at locationl;

2. P&S asks the producer for some data about the item,
namely its size, the cost, and how much time does it take
to produce it;

3. P&S asks the delivery service the price and time needed
to transport an object of such a size tol;

4. P&S provides the user an offer which takes into account
the overall cost (plus an added cost forP&S) and time to
produce and deliver the item;

5. the user sends a confirmation of the order, which is dis-
patched byP&S to the delivery and producer.

Of course this is only the nominal case, and other interac-
tions should be considered, e.g., for the cases the producer
and/or delivery services are not able to satisfy the request,
or the user refuses the final offer.

At a high level, Figure 2 describes the data flow amongst
our integrated web service, the two services composing it,
and the user. ¤

Abstract processes as state transition systems
BPEL4WS (Andrewset al. 2003) provides an operational de-
scription of the (stateful) behavior of web services on top
of the service interfaces defined in theirWSDL specifica-
tions. An abstractBPEL4WS description identifies the part-
ners of a service, its internal variables, and the operations
that are triggered upon the invocation of the service by some
of the partners. Operations include assigning variables, in-
voking other services and receiving responses, forking par-
allel threads of execution, and nondeterministically picking
one amongst different courses of actions. Standard impera-
tive constructs such as if-then-else, case choices, and loops,
are also supported.

We encodeBPEL4WS processes asstate transition sys-
temswhich describe dynamic systems that can be in one
of their possiblestates(some of which are marked asini-
tial states) and can evolve to new states as a result of per-
forming someactions. Actions are distinguished ininput
actions, which represent the reception of messages,output
actions, which represent messages sent to external services,
and a special actionτ , calledinternal action. The actionτ
is used to represent internal evolutions that are not visible
to external services, i.e., the fact that the state of the system
can evolve without producing any output, and independently
from the reception of inputs. Atransition relationdescribes
how the state can evolve on the basis of inputs, outputs, or of
the internal actionτ . Finally, alabeling functionassociates
to each state the set of propertiesProp that hold in the state.
These properties will be used to define the composition re-
quirements.

Definition 2 (State transition system (STS))
A state transition systemΣ is a tuple 〈S,S0, I,O,R,L〉
where:

• S is the finite set of states;



PROCESS
Shipper;

TYPE
Size; Location; Cost; Delay;

STATE
pc: { START, getRequest, checkAvailable,endcheckAvailable,

sequence1, sequence2, prepareOffer, sendOffer, waitAnswer,
endwaitAnswer, empty1, prepareNotAvail, sendNotAvail,

SUCC, FAIL};
customerreq size: Size∪ { UNDEF};
customerreq loc: Location∪ { UNDEF};
offer delay: Delay∪ { UNDEF};
offer cost: Cost∪ { UNDEF};

INIT
pc = START;
offer delay = UNDEF;
offer cost = UNDEF;
customerreq size = UNDEF;
customerreq loc = UNDEF;

INPUT
request(s: Size, l: Location);
ack;
nack;

OUTPUT
offer(d: Delay, c: Cost);
not avail;

TRANS
pc = START -[TAU]-> pc = getRequest;
pc = getRequest -[INPUT request(customerreq size,

customerreq loc)]-> pc = checkAvailable;
pc = checkAvailable -[TAU]-> pc = sequence1;
pc = checkAvailable -[TAU]-> pc = sequence2;
pc = sequence1 -[TAU]-> pc = prepareOffer;
pc = prepareOffer -[TAU]-> pc = sendOffer,

offer cost IN Cost,
offer delay IN Delay;

pc = sendOffer -[OUTPUT offer(offercost, offerdelay)]->
pc = waitAnswer;

pc = waitAnswer -[INPUT nack]-> pc = FAIL;
pc = waitAnswer -[INPUT ack]-> pc = empty1;
pc = empty1 -[TAU]-> pc = endwaitAnswer;
pc = endwaitAnswer -[TAU]-> pc = endcheckAvailable;
pc = endcheckAvailable -[TAU]-> pc = SUCC;
pc = sequence2 -[TAU]-> pc = prepareNotAvail;
pc = prepareNotAvail -[TAU]-> pc = sendNotAvail;
pc = sendNotAvail -[OUTPUT notavail]-> pc = FAIL;

Figure 3: The STS for theShipper process.

• S0 ⊆ S is the set of initial states;

• I is the finite set of input actions;

• O is the finite set of output actions;

• R ⊆ S × (I ∪ O ∪ {τ}) × S is the transition relation;

• L : S → 2Prop is the labeling function.

We assume that infinite loops ofτ -transitions cannot appear
in the system. Indeed, an infiniteτ -loop would describe a
divergent behavior of the system, i.e., a behavior where the
service is not interacting with the environment. We also as-
sume that there is no state which originates both input and
output transitions.

We have formally defined a translation that associates a
STS to each component service, starting from its abstract
BPEL4WS specification. This translation is performed au-
tomatically by theBPEL2STS module in Figure 1. For the
moment, the translation is restricted to a subset ofBPEL4WS
processes: we support allBPEL4WS basic and structured
activities, like invoke, receive, sequence, switch, while,
flow (without links) and pick; moreover we supportas-
signments andcorrelation. Our next steps will be dealing
with scopes and withfault, event andcompensation han-
dlers. We omit the formal definition of the translation, since
it is outside the scope of the paper.

Example 3 Figure 3 shows the graphical representation
(using Active BPEL) of the abstractBPEL4WS process of
the Shipper, and its corresponding STS. The set of states
S models the steps of the evolution of the process and the
values of its variables. The special variablepc imple-
ments a “program counter” that holds the current execu-
tion step of the service (e.g.,pc has valuegetRequest
when the process is waiting to receive a shipping request,
and valuecheckAvailable when it is ready to check
whether the shipping is possible). The other variables (e.g.,
offerdelay, offercost) correspond to those used
by the process to store significant information. In the initial
statesS0 all the variables are undefined butpcthat is set to
START.

The evolution of the process is modeled through a set of
possible transitions. Each transition defines its applicability
conditions on the source state, its firing action, and the des-
tination state. For instance, “pc = checkAvailable
-[TAU]-> pc = sequence1” states that an action
τ can be executed in statecheckAvailable and leads
to the statesequence1. We remark that eachTRANS
clause of Figure 3 corresponds to different elements in the
transition relationR: e.g., “pc = checkAvailable
-[TAU]-> pc = sequence1” generates different



elements ofR, depending on the values of variables
customerreqsizeandcustomerreqloc.

According to the formal model, we distinguish among
three different kinds of actions. The input actionsI model
all the incoming requests to the process and the informa-
tion they bring (i.e.,request is used for the receiving of
the shipping request, whileackmodels the confirmation of
the order andnack its cancellation). The output actionsO
represent the outgoing messages (i.e.,notavail is used
when the shipping is not supported by the process, while
offer is used to bid the transportation of an item at a par-
ticular price). The actionτ is used to model internal evolu-
tions of the process, as for instance assignments and deci-
sion making (e.g., when theShipper process is in the state
checkAvailableand performs internal activities to de-
cide whether the shipping is possible, or when, in the state
prepareOffer, it must obtain the shipping price and de-
lay).

Finally, the properties of the STS are expressions of the
form <variable> = <value>, and the labeling func-
tion is the obvious one.

The definition of STS provided in Figure 3 is parametric
w.r.t. the typesSize,Location,Cost, andDelayused
in the messages. In order to obtain a concrete STS and to
apply the automated synthesis techniques described later in
this paper, finite ranges have to be assigned to these types.
We are currently adopting the approach of assigning very
small ranges to the types, namely ranges with only two el-
ements. We will discuss the impacts of this choice in the
discussion of the experimental evaluation. ¤

Composition requirements as extended goals
Consider the following example.

Example 4 We want the compositeP&S service to“sell
items at home”. This means we want theP&S service
to reach the situation where the user has confirmed his or-
der, and the service has confirmed the corresponding (sub-
)orders to the producer and shipper services. However, the
product may not be available, the shipping may not be pos-
sible, the user may not accept the total cost or the total time
needed for the production and delivery of the item... We can-
not avoid these situations, and we therefore cannot ask the
composite service to guarantee this requirement. Neverthe-
less, we would like theP&S service totry (do whatever is
possible) to satisfy it. Moreover, in the case the“sell items
at home” requirement is not satisfied, we would like that the
P&S service does not commit to an order for production or
for delivery, since we do not want the service to buy an item
that will be never delivered, as well we do not want to spend
money for a delivering service when there is no item to de-
liver. Let us call this requirement“never a single commit”.
Our global requirement would therefore be something like:

try to “sell items at home”;
upon failure,
do “never a single commit”.

Notice that the secondary requirement (“never a single
commit”) has a different strength w.r.t. the primary one

(“sell items at home”). We write “do” satisfy, rather than
“ try” to satisfy. Indeed, in the case the primary require-
ment is not satisfied, we want the secondary requirement to
be guaranteed.

We need a formal language that can express requirements
as those of the previous example, including conditions of
different strengths (like“try” and “do”), and preferences
among different (e.g., primary and secondary) requirements.
For this reason, we cannot use well known temporal logics
like LTL or CTL (Emerson 1990), that have been used in
other frameworks to formalize requirements for automated
synthesis, but that are unable to describe such requirements.
We use instead the EAGLE language, which has been de-
signed with the purpose to satisfy such expressiveness2. A
detailed definition and a formal semantics for the EAGLE
language can be found in (Dal Lago, Pistore, & Traverso
2002). Here we just explain how EAGLE can express the
composition requirement of the running example.

Example 5 TheEAGLE formalization of the requirement is
the following.

TryReach

user.pc=SUCC∧producer.pc=SUCC∧
shipper.pc=SUCC∧

user.offerdelay=

adddelay(producer.offerdelay,
shipper.offerdelay)∧

user.offercost=

addcost(producer.offercost,
shipper.offercost)

Fail DoReach

user.pc=FAIL∧producer.pc=FAIL∧
shipper.pc=FAIL

The goal is of the form “TryReach c Fail DoReach d”.
TryReach c requires a service that tries to reach condition
c, in our case the condition“sell items at home”. During
the execution of the service, a state may be reached from
which it is not possible to reachc, e.g., since the product is
not available. When such a state is reached, the requirement
TryReach c fails and the recovery conditionDoReach d, in
our case“never a single commit” is considered. ¤

Composition Problem
The automated composition problem has two inputs
(see Figure 1): the formal composition requirementρ
and the parallel STSΣ‖, which represents the services
ΣW1

, . . . ,ΣWn
. We now formally define theparallel prod-

uct of two STSs, which models the fact that both systems
may evolve independently, and which is used to generateΣ‖

from the component web services.

2However, the results presented in this paper are valid also in
the case a temporal logic like CTL or LTL is chosen to formalize
requirements.



Definition 6 (parallel product)
Let Σ1 = 〈S1,S

0
1 , I1,O1,R1,L1〉 and Σ2 =

〈S2,S
0
2 , I2,O2,R2,L2〉 be two STSs with(I1∪O1)∩(I2∪

O2) = ∅. The parallel productΣ1 ‖ Σ2 of Σ1 andΣ2 is de-
fined as:

Σ1‖Σ2 = 〈S1×S2,S
0

1×S0

2 , I1∪I2,O1∪O2,R1‖R2,L1‖L2〉

where:

• 〈(s1, s2), a, (s′1, s2)〉 ∈ (R1‖R2) if 〈s1, a, s
′
1〉 ∈ R1;

• 〈(s1, s2), a, (s1, s
′
2)〉 ∈ (R1‖R2) if 〈s2, a, s

′
2〉 ∈ R2;

and(L1‖L2)(s1, s2) = L1(s1) ∪ L2(s2).

The system representing (the parallel evolutions of) the com-
ponent servicesW1, . . . ,Wn of Figure 1 is formally defined
asΣ‖ = ΣW1

‖ . . . ‖ ΣWn
.

We remark that this definition only applies to the specific
case where inputs/outputs ofΣ1 and those ofΣ2 are disjoint.
This is a reasonable assumption in the case of web service
composition, where the different components are indepen-
dent (e.g., in theP&S domain, there is no direct communi-
cation between user, producer, and shipper). It is however
possible to extend the approach to the more general case
where Σ1 and Σ2 can send messages to each other (i.e.,
(I1 ∪ O1) ∩ (I2 ∪ O2) 6= ∅) by modifying in a suitable
way the definition of parallel product.

The automated composition problem consists in generat-
ing a STSΣc that controlsΣ‖ by satisfyingρ. We now de-
fine formally the STS describing the behaviors of a STSΣ
when controlled byΣc.

Definition 7 (controlled system)
Let Σ = 〈S,S0, I,O,R,L〉 and Σc =

〈Sc,S
0
c ,O, I,Rc,L∅〉 be two state transition systems,

whereL∅(sc) = ∅ for all sc ∈ Sc. The STSΣc . Σ,
describing the behaviors of systemΣ when controlled by
Σc, is defined as:

Σc . Σ = 〈Sc × S,S0
c × S0, I,O,Rc . R,L〉

where:

• 〈(sc, s), τ, (s
′
c, s

′)〉 ∈ (Rc . R) if 〈sc, τ, s
′
c〉 ∈ Rc;

• 〈(sc, s), τ, (sc, s
′)〉 ∈ (Rc . R) if 〈s, τ, s′〉 ∈ R;

• 〈(sc, s), a, (s′c, s
′)〉 ∈ (Rc . R), with a 6= τ , if

〈sc, a, s′c〉 ∈ Rc and〈s, a, s′〉 ∈ R.

Notice that we require that the inputs ofΣc coincide with the
outputs ofΣ and vice-versa. Notice also that, although the
systems are connected so that the output of one is associated
to the input of the other, the resulting transitions inRc .
R are labelled by input/output actions. This allows us to
distinguish the transitions that correspond toτ actions ofΣc

or Σ from those deriving from communications betweenΣc

andΣ. Finally, notice that we assume that the plan has no
labels associated to the states.

A STS Σc may not be adequate to control a systemΣ.
Indeed, we need to guarantee that, wheneverΣc performs
an output transition, thenΣ is able to accept it, and vice-
versa. We define the condition under which a states of Σ
is able to accept a message according to our asynchronous
model, which abstracts away queues. We assume thats can

accept a messagea if there is some successors′ of s in Σ,
reachable froms through a chain ofτ transitions, such thats
can perform an input transition labelled witha. Vice-versa,
if states has no such successors′, and messagea is sent to
Σ, then a deadlock situation is reached.3

In the following definition, and in the rest of the paper, we
denote byτ -closure(s) the set of the states reachable from
s through a sequence ofτ transitions, and byτ -closure(S)
with S ⊆ S the union ofτ -closure(s) on alls ∈ S.

Definition 8 (deadlock-free controller)
Let Σ = 〈S,S0, I,O,R,L〉 be a STS andΣc =

〈Sc,S
0
c ,O, I,Rc,L∅〉 be a controller forΣ. Σc is said to

bedeadlock freefor Σ if all states(sc, s) ∈ Sc × S that are
reachable from the initial states ofΣc . Σ satisfy the follow-
ing conditions:

• if 〈s, a, s′〉 ∈ R with a ∈ O then there is somes′c ∈
τ -closure(sc) such that〈s′c, a, s′′c 〉 ∈ R for somes′′c ∈ Sc;
and

• if 〈sc, a, s′c〉 ∈ Rc with a ∈ I then there is somes′ ∈
τ -closure(s) such that〈s′, a, s′′〉 ∈ R for somes′′ ∈ S.

In a web service composition problem, we need to gen-
erate aΣc that guarantees the satisfaction of a composition
requirementρ (see Figure 1). This is formalized by requiring
that the controlled systemΣc . Σ‖ must satisfyρ, which is
defined in terms of the executions thatΣc . Σ‖ can perform.
So, for instance, ifρ = DoReachp with p a state condition,
then we need to check that all executions ofΣc . Σ‖ eventu-
ally reach a “configuration” that satisfies conditionp, while
if ρ = DoMaint q then we need to check that conditionq is
satisfied in all “configurations” reached by all executions of
Σc . Σ‖.

In order to define formally whenΣc . Σ‖ satisfiesρ,
we need to define first the executions ofΣc . Σ‖. In do-
ing this, we need to take into account that the state tran-
sition systemΣ‖ models a domain that is only partially
observable byΣc. That is, at execution time, the com-
posite serviceΣc cannot in general get to know exactly
what is the current state of the component services mod-
eled byΣW1

, . . . ,ΣWn
. Consider for instance the STS cor-

responding to theShipper (see Figure 3). The composite
P&S service has no access to the values of the shipper’s
internal variables, and can only deduce their values from
the messages exchanged with theShipper. This uncer-
tainty has two different sources. The first one is the stan-
dard source of uncertainty in planning, namely the pres-
ence of non-deterministic transitions (e.g., the twoτ tran-
sitions of theShipper from “pc = checkAvailable”,
which model the fact the shipping may be possible or not).
The second source of uncertainty is due to the fact that we
are modeling an asynchronous framework and that, there-
fore, it is not possible for theP&S to know when in-
ternal τ transitions are performed in theShipper. Due
to this uncertainty, after a message “request(s,l)”

3We remark that, if there is such a successors
′ of s, a deadlock

can still occur. This can happen if a different chain ofτ transitions
is executed froms that leads to a states′′ for which a cannot be
executed anymore. In this case, the deadlock is recognized ins

′′.



has been sent to theShipper, it is impossible to dis-
tinguish whether the shipper is still checking whether
the delivery is possible (pc = checkAvailable),
or whether this task has terminated positively (pc is
sequence1,prepareOffer, orsendOffer) or neg-

atively (pc is sequence2, prepareNotAvail, or
sendNotAvail). This uncertainty disappears only when
an “offer” or a “notavail” message is received by the
P&S.

In the definition of the executions ofΣc.Σ‖ (and, more in
general, of a state transition systemΣ) we take into account
this uncertainty by considering, at each step of the execu-
tion, a set of possible states, each equally plausible given
the partial knowledge that we have of the system. Such a set
of states is called abelief state, or simply belief. The ini-
tial belief for the execution is the set of initial statesS0 of
Σ. This belief is updated wheneverΣ performs an observ-
able (input or output) transition. More precisely, ifB ⊆ S
is the current belief and an actiona ∈ I ∪ O is observed,
then the new beliefB′ = Evolve(B, a) is defined as follows:
s ∈ Evolve(B, a) if, and only if, there is some states′ reach-
able fromB by performing a (possibly empty) sequence of
τ transitions, such that〈s′, a, s〉 ∈ R. That is, in defining
Evolve(B, a) we first consider every evolution of states inB
by internal transitionsτ , and then, from every state reach-
able in this way, their evolution caused bya.

Definition 9 (belief evolution)
Let B ⊆ S be a belief on some state transition systemΣ.
We define the evolution ofB under actiona as the belief
B′ = Evolve(B, a), where

Evolve(B, a) = {s′ : ∃s ∈ τ -closure(B).〈s, a, s′〉 ∈ R}.

In the definition of goal satisfaction, we use beliefs to
describe the different “configurations” reached during exe-
cution. In order to characterize goal satisfaction, we need
to define when a beliefB satisfies a given state property
p. In planning under partial observability,B is said to sat-
isfy p simply if all statess ∈ B satisfyp. The definition
becomes more complex in our asynchronous setting, due
to the presence ofτ transitions. Let us consider again the
Shipper. After a request message has been sent to the ship-
per, it is not yet possible to predict whether the shipping can
be fulfilled or not; therefore, we expect that conditionspc
= prepareOfferandpc = notAvailableare both
false inB. On the other hand, after an acknowledge message
has been received by the shipper, it is unavoidable to reach
a successful state; therefore, we want to be able to conclude
that conditionpc = SUCC is true in the corresponding be-
lief. Informally, we are assuming that the execution ofτ
transitions cannot be postponed forever. Therefore, if the
execution ofτ transitions is guaranteed to reach a state sat-
isfying a given condition, then we can assume that the con-
dition holds also in belief stateB. Conversely, if there is
some sequence ofτ transitions that does not contain states
satisfyingp and that cannot be further extended with other
τ transitions so thatp is reached, then the propertyp is not
satisfied inB.

Definition 10 (belief satisfying a property)
LetΣ = 〈S,S0, I,O,R,L〉 be a STS,p ∈ Prop be a prop-

erty for Σ, andB ⊆ S be a belief. We say thatB satisfies
p, written B |=Σ p, if the following condition holds. Let
s0, s1, . . . , sn be such thats0 ∈ B, 〈si, τ, si+1〉 ∈ R and
either sn has no outgoing transitions or there existssn+1

such that〈sn, a, sn+1〉 with a 6= τ . Thenp ∈ L(si) for
some0 ≤ i ≤ n.

We are now ready to define the STS that defines the exe-
cutions ofΣc .Σ‖ and, more in general, of a STSΣ. We call
it “belief-level” STS, since its states are beliefs ofΣ and its
transitions describe belief evolutions.

Definition 11 (belief-level system)
Let Σ = 〈S,S0, I,O,R,L〉 be a STS. The corresponding

belief-level STS isΣB = 〈SB,S0
B, I,O,RB,LB〉, where:

• SB are the beliefs ofΣ reachable from the initial belief
S0;

• S0
B = {S0};

• transitionsRB are defined as follows: if Evolve(B, a) =
B′ 6= ∅ for somea ∈ I ∪ O, then〈B, a,B′〉 ∈ RB;

• LB(B) = {p ∈ Prop : B |=Σ p}.

We remark that a belief-level STS is a very restricted case of
STS, since it only has one initial state, there are noτ transi-
tions, and, for all beliefsB and actionsa there is at most one
beliefB′ such that〈B, a,B′〉 ∈ RB. For these reasons, it is
straightforward to re-interpret onΣB the definitions of goal
satisfaction proposed in the literature for (fully observable)
non-deterministic domains (e.g., strong and strong cyclic
reachability goals (Cimattiet al. 2003), LTL and CTL goals
(Pistore & Traverso 2001), and the most relevant for our pur-
poses, EAGLE goals (Dal Lago, Pistore, & Traverso 2002)).
In the following, we writeΣB |= ρ whenever the belief-level
STSΣB satisfies goalρ.

We can now characterize formally a (web service) com-
position problem.

Definition 12 (composition problem)
Let Σ1, . . . ,Σn be a set of state transition systems, and let
ρ be a composition requirement. The composition problem
for Σ1, . . . ,Σn andρ is the problem of finding a controller
Σc that is deadlock-free and such thatΣB |= ρ whereΣB is
the belief-level STS ofΣc . (Σ1 ‖ . . . ‖ Σn).

Once the STSΣc has been generated, it is translated into
BPEL4WS. This translation is performed by component
STS2BPEL of Figure 1.

Planning domain, problem and solution
We now show how we can define the composition problem
in terms of a planning problem for extended goals and with
nondeterminism. We choose to translate the composition
problem to a planning problem under full observability in
the belief space. This allows us to use efficient planning al-
gorithms based on symbolic model checking.

The definitions of planning domains and plans are taken,
with minor modifications, from (Pistore & Traverso 2001).
We recall that a fully observable non-deterministic planning
domain is defined as a tupleD = 〈S,S0,A, T ,L〉, whereS
is the finite set of states andS0 ⊆ S is the subset of initial
states,A is the finite set of actions,T ⊆ S × A × S is



the transition relation andL : S → Prop is the labelling
function.

We now formally define the planning domain associated
to a STS.

Definition 13 (planning domain)
Let Σ = 〈S,S0, I,O,R,L〉 be a STS and let

ΣB = 〈SB,S0
B, I,O,RB,LB〉 be the corresponding

belief-level state transition system according to Defini-
tion 11. The planning domain corresponding toΣ is D =
〈SD,S0

D,AD, TD,LD〉, where:

• SD = SB × (O ∪ {?}) andS0
D = S0

B × {?};
• AD = I ∪ {?};
• transitionsTD are defined as follows:

– if 〈B, i,B′〉 ∈ RB with i ∈ I then:
〈(B, o), i, (B′, ?)〉 ∈ TD;

– if 〈B, o′, B′〉 ∈ RB with i ∈ I then:
〈(B, o), ?, (B′, o′)〉 ∈ TD;

• LD((B, o)) = LB(B).

When transforming a STS into a planning domain, we first
have to move to the belief level, that is, each state of the do-
main corresponds to a whole belief state of the starting state
transition system. This is necessary to handle partial ob-
servability in the STS, and to allow for applying algorithms
working in fully observable domains. A second transforma-
tion applied in the construction of the planning domain is
that outputs are moved from the transitions into the states of
the domain. This is obtained by defining a state of a plan-
ning domain as a pair(B, o), whereo is the output received
during the last transition (a special mark? is used if the last
transition has been an input).

Existing planning algorithms can thus be used to obtain
plans for a domainD and for a given goal. We recall that a
planπ = 〈C, c0, α, ε〉 is defined by a set of execution con-
textsC, one of which,c0, is the initial one, by an action
evolution (partial) functionα : C × S → A and by a con-
text evolution (partial) functionε : C × S → C.

The execution of a planπ = 〈C, c0, α, ε〉 on a domain
D = 〈S,S0,A, T ,L〉 is defined in term of configurations,
i.e., of pairs(c, s) ∈ C × S. The initial configurations
are those of the form(c0, s0), with s0 ∈ S0. In configu-
ration(c, s) the plan executes actiona = α(c, s), if defined,
and evolves into the set of configurations(c′, s′), where
〈s, a, s′〉 ∈ T andc′ = ε(c, s). We say that a plan is ex-
ecutable if, for all configurations(c, s) reachable from the
initial ones, if a = α(c, s) is defined, then alsoε(c, s) is
defined, anda is executable ins.

Theexecution structureof a planπ over a domainD is the
automaton consisting of all reachable configurations, where
each state(c, s) is labelled according toL(s). A plan is
said to satisfy the goal if the goal is true on the execution
structure.

The final step is then to transform a planπ into a STS.
The following definition explains how this is done.

Definition 14 (system of a plan)
Let Σ, ΣB, andD be defined as in Definition 13, and let

π = 〈C, c0, α, ε〉 be a plan forD. The STS corresponding

to π is defined as follows:Σπ = 〈Sπ,S0
π,O, I,Rπ,L∅〉,

where:

• Sπ = C × SB × (O ∪ {?})

• S0
π = {c0} × S0

B × {?}

• Rπ is defined as follows:
– if α(c, (B, o)) = i 6= ? and c′ = ε(c, (B, o)),

then 〈(c,B, o), i, (c′, B′, ?)〉 ∈ Rπ, where B′ =
Evolve(B, i);

– if α(c, (B, o)) = ? and c′ = ε(c, (B, o)), then
〈(c,B, o), o′, (c′, B′, o′)〉 ∈ Rπ for all o′ andB′ 6= ∅
such thatB′ = Evolve(B, o′).

According to this definition, the STS corresponding to the
plan mimics very strictly the execution structure forD and
π, except for the necessity to describe the outputs on the
transitions.

We remark that, in general, the STS obtained from a plan
according to Definition 14 may not be a deadlock free con-
troller for the starting STSΣ (see Definition 8). However,
there are conditions onΣ that guarantee not only thatΣπ is
deadlock free, but also thatΣπ satisfies a given composition
requirementρ on Σ wheneverπ is a solution to planning
goalρ on planning domainD. The conditions that guaran-
tee these properties are that there is no belief in which both
inputs and outputs are possible, and that, when it is the con-
troller’s turn, we need to be sure that the domain will be able
to process all messages the controller can decide to send.

Definition 15 (controllable system)
LetΣ be a STS and letΣB be the corresponding belief-level
state transition system. We say thatΣ is controllable if all
beliefsB in ΣB satisfy the following conditions:

• if Evolve(B, o) 6= ∅ for someo ∈ O, then Evolve(B, i) =
∅ for all i ∈ I;

• if Evolve(B, i) 6= ∅ for somei ∈ I, then Evolve(B, o) =
∅ for all o ∈ O;

• if Evolve(B, i) 6= ∅ for somei ∈ I, then, for eachs ∈
τ -closure(B) there is somes′ ∈ τ -closure(s) and some
states′′ ∈ S such that〈s′, i, s′′〉 ∈ R.

We remark that this constraint removes possible solutions.
That is, there are service composition problems for which
there exist solutions according to Definition 12, but that do
not satisfy the conditions in Definition 15. Still, these con-
ditions are very reasonable in the field of web services. In-
deed, the requirement that inputs and outputs are not inter-
mixed in the same belief state correspond to the assumption
that, in the interaction with a web service, we always know
if the service is waiting for an invocation, or whether it is
going to send an answer to a previous invocation. The re-
quirement that the same set of inputs is available from all
states corresponds to the assumption that, in any moment,
we know what are the valid invocations that we can per-
form on a service. All the examples of web services from
real world applications that we have been working on re-
spect these assumptions and can hence be composed using
the approach outlined above.

We are now ready to state the correspondence results be-
tween planning problems and composition problems.



Lemma 16 (controller/plan executability) Let Σ be a
deadlock-free STS and letΣB, D be defined as in Defini-
tion 13. Letπ be a plan forD andΣπ be the corresponding
STS. Ifπ is executable onD, thenΣπ is executable onΣ.

Theorem 17 (controller/plan equivalence)Let Σ be a
deadlock-free STS and letΣB, D be defined as in Defini-
tion 13.

If plan π is a solution for domainD and goalg, andΣπ

is the STS corresponding toπ, thenΣπ . Σ |= g holds.
Moreover, if there is someΣc such thatΣc . Σ |= g, then

there exists someπ that is a solution for domainD and goal
g (and henceΣπ . Σ |= g holds).

Theorem 17 states that we can use planning algorithms
for fully-observable nondeterministic domains and extended
goals (e.g., EAGLE) to do automated composition. This al-
lows us to exploit existing techniques based on symbolic
model checking that are powerful enough to solve the au-
tomated composition problem and can do it efficiently, as
shown in the next section.

Conclusions and Related Work
In this paper, we have presented a novel framework for
planning for the composition of asynchronousBPEL4WS
processes. In order to test the performance of the pro-
posed technique, we have conducted several experiments,
considering two different artificial scalable domains, and
a set of problems extracted from realistic web service
domains. The whole set of results can be found at
http://astroproject.org/; for reasons of space,
here we only discuss the realistic domains.

We first consideredP&S, the example explained in the
previous sections, and an extension of it that introduces a
third party, theBank, that is delegated to receive the money
from the client. Then we considered a case study taken
from a real e-government application we are developing for
a private company. We aim at providing a service that im-
plements a (public) waste management office (WMO), i.e.
a service that manages user requests to open sites for the
disposal of dangerous waste. We consider three variants
of this domain, corresponding to an increasing interleav-
ing between the different services. Automated composition
is very fast, in all cases, as presented in Table 4, and dra-
matically improves over the solution presented in (Pistoreet
al. 2004), which only is able to tackle the simpler model,
with a model construction time of more than 13.000 sec-
onds, and a planning time of more than 3.000 seconds. This
improved scalability is due to our reasonable modeling of
asynchronous interactions among services, which takes into
account that message queues are used in realBPEL4WS en-
gines, but which does not commit to any specific implemen-
tation. We remark that here, just as in (Pistoreet al. 2004),
data types are defined to have binary ranges. This solution
guarantees a good performance and, at least in the consid-
ered examples, it is not restrictive, in the sense that the au-
tomatically synthesized web service can be easily adapted
to work with different (even unbounded) ranges for these
types. We are currently investigating the formal conditions
that guarantee this property.

# of com- model planning
ponents construction

P& S 3 8.4 sec. 1.0 sec.
P& S, BANK 4 39.6 sec. 35.4 sec.
WMO1 5 187.5 sec. 31.6 sec.
WMO2 5 173.1 sec. 48.6 sec.
WMO3 5 174.9 sec. 120.6 sec.

Figure 4: Experiments with different applications.

As far as we know, the framework for planning in asyn-
chronous domains presented in this paper is new, and has
never been proposed before. Different automated planning
techniques have been proposed to tackle the problem of ser-
vice composition, see, e.g., (Wuet al. 2003; Dermott 1998;
Sheshagiri, desJardins, & Finin 2003). However, none of
these can deal with the problem that we address in this paper,
where the planning domain is nondeterministic, partially ob-
servable, and asynchronous, and goals are not limited to
reachability conditions.

Other planning techniques have been applied to related
but somehow orthogonal problems in the field of web ser-
vices. The interactive composition of information gathering
services has been tackled in (Thakkar, Knoblock, & Ambite
2003) by using CSP techniques. Works in the field of Data
and Computational Grids are more and more moving toward
the problem of composing complex workflows by means of
planning and scheduling techniques (Blythe, Deelman, &
Gil 2003).

Planning for the automated discovery and composition of
semantic web services, e.g., based on OWL-S, is used in
(McIlraith & Son 2002; McIlraith & Fadel 2002; Narayanan
& McIlraith 2002). These works do not take into account
behavioral descriptions of web service, like our approach
does withBPEL4WS.

The work in (Hull et al. 2003) presents a formal frame-
work for composing e-services from behavioral descriptions
given in terms of automata. This work focuses on the the-
oretical foundations, without providing practical implemen-
tations. Moreover, the considered e-composition problem
is fundamentally different from ours, since it is seen as the
problem of coordinating the executions of a given set of
available services. No concrete and executable processes
can be generated with that approach. This is the main differ-
ence also with the work described in (Berardiet al. 2003).

More in general, our work shares some ideas with
work on the automata-based synthesis of controllers (see,
e.g., (Pnueli & Rosner 1989; Vardi 1995)). Indeed, the com-
posed service can be seen as a module that controls an envi-
ronment which consists of the published services. However,
also in this case, the work focuses on theoretical foundations
and does not provide practical implementations for the auto-
mated compositions of web services.

Some preliminary work that applies the idea of “planning
via symbolic model checking” to the automated composi-
tion of web services is presented in (Pistoreet al. 2004).
We improve substantially on this work by providing an ad-



equate modeling of asynchronousBPEL4WS processes, by
generating concreteBPEL4WS processes that can be actu-
ally implement web services interactions, and by definitely
improving the performances of the plan generation.

In the future, we plan to adopt techniques for planning at
the knowledge level in the style of (Petrick & Bacchus 2002)
to address the problem of associating finite ranges to the to
data types. We also plan to investigate techniques for fur-
ther improving the scalability. In particular, we are going
to experiment well known techniques for avoiding the com-
putationally complex construction of parallel state transition
systems. Finally, we plan to extend the work to the auto-
mated composition of semantic web services, e.g., described
in OWL-S (OWL-S 2003) orWSMO (WSMO 2004), along
the lines of the work done in (Traverso & Pistore 2004).
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